Skip to main content
Log in

Graphene quantum dot coupled with gold nanoparticle based “off-on” fluorescent probe for sensitive and selective detection of L-cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report that graphene quantum dots (GQDs) coupled to gold nanoparticles (AuNPs) are viable “off-on” fluorescent probes for L-cysteine. The fluorescence of GQDs is quenched by AuNPs through fluorescence resonance energy transfer (FRET), and this shifts the blue fluorescence of the GQDs to an “off” status. Fluorescence intensity (measured under 345 nm excitation) is inversely proportional to the concentration of AuNPs in the 0.15 to 2.16 nM range, with a 15 pM detection limit. The fluorescence of the GQDs is converted back to an “on” status by adding L-cysteine which binds to the AuNPs and thereby suppresses quenching. The intensity of the recovered fluorescence is directly proportional to the concentration of L-cysteine in the 1.0 to 4000 nM range, and the limit of detection is 0.32 nM. The assay was optimized with respect to the concentration of GQDs and AuNPs, pH value, and reaction time. The method is selective in that many other thiol-containing biomolecules do not interfere. It was applied to the detection of L-cysteine in human urine and human plasma samples and gave satisfactory results.

Graphene quantum dot coupled to gold nanoparticle are a viable “off-on” fluorescent probe for sensitive and selective determination of L-cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu Y, Yan K, Okoth OK, Zhang JD (2015) A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene Quantum dots for chloramphenicol determination. Biosens Bioelectron 74:1016

    Article  CAS  Google Scholar 

  2. Wen J, Xu YQ, Li HJ, Lu AP, Sun SG (2015) Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun 51:11346

    Article  CAS  Google Scholar 

  3. Ma CB, Zhu ZT, Wang HX, Huang X, Zhang X, Qi XY, Zhang HL, Zhu YH, Deng X, Peng Y, Han Y, Zhang H (2015) A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale 7:10162

    Article  CAS  Google Scholar 

  4. Sun HJ, Zhao AD, Gao N, Li K, Ren JS, Qu XG (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene Quantum dots. Angew Chem Int Ed 54:7176

    Article  CAS  Google Scholar 

  5. He YZ, Sun J, Feng DX, Chen HQ, Gao F, Wang L (2015) Graphene Quantum dots: highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone. Biosens Bioelectron 74:418

    Article  CAS  Google Scholar 

  6. Yuan FL, Ding L, Li YC, Li XH, Fan LZ, Zhou SX, Fang DC, Yang SH (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7:11727

    Article  CAS  Google Scholar 

  7. Jin HL, Huang HH, He YH, Feng X, Wang S, Dai LM, Wang JC (2015) Graphene Quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J Am Chem Soc 137:7588

    Article  CAS  Google Scholar 

  8. Wang FX, Gu ZY, Lei W, Wang WJ, Xia XF, Hao QL (2014) Graphene Quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensors Actuators B Chem 190:516

    Article  CAS  Google Scholar 

  9. He YZ, Wang XX, Sun J, Jiao SF, Chen HQ, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized grapheme Quantum dots based sensing system. Anal Chim Acta 810:71

    Article  CAS  Google Scholar 

  10. Ran X, Sun HJ, Pu F, Ren JS, Qu XG (2013) Ag nanoparticle-decorated graphene Quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chem Commun 49:1079

    Article  CAS  Google Scholar 

  11. Li YH, Zhang L, Huang J, Liang RP, Qiu JD (2013) Fluorescent graphene Quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem Commun 49:5180

    Article  CAS  Google Scholar 

  12. Wu ZZ, Li WY, Chen J, Yu C (2014) A graphene Quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538

    Article  CAS  Google Scholar 

  13. Pei HM, Zhu SY, Yang MH, Kong RM, Zheng YQ, Qu FL (2015) Graphene oxide Quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 74:909

    Article  CAS  Google Scholar 

  14. Huang S, Qiu HN, Zhu FW, Lu SY, Xiao Q (2015) Graphene Quantum dots as on-off-on fluorescent probes for chromium (VI) and ascorbic acid. Microchim Acta 182:1723

    Article  CAS  Google Scholar 

  15. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790

    Article  CAS  Google Scholar 

  16. Zhu F, Li XY, Li YC, Yan M, Liu SQ (2015) Enantioselective circular dichroism sensing of cysteine and glutathione with gold nanorods. Anal Chem 87:357

    Article  CAS  Google Scholar 

  17. Yang XF, Guo YX, Strongin RM (2011) Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed 50:10690

    Article  CAS  Google Scholar 

  18. Zhang WB, Li PL, Geng QQ, Duan YH, Guo MC, Cao YS (2014) Simultaneous determination of glutathione, cysteine, homocysteine, and cysteinylglycine in biological fluids by ion-pairing high-performance liquid chromatography coupled with precolumn derivatization. J Agric Food Chem 62:5845

    Article  CAS  Google Scholar 

  19. Dong YJ, Su M, Chen PY, Sun HW (2015) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, L-cysteine and glutathione. Microchim Acta 182:1071

    Article  CAS  Google Scholar 

  20. Lee PT, Thomson JE, Karina A, Salter C, Johnston C, Davies SG, Compton RG (2015) Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode. Analyst 140:236

    Article  CAS  Google Scholar 

  21. Küster A, Tea I, Sweeten S, Rozé J, Robins RJ, Darmaun D (2008) Simultaneous determination of glutathione and cysteine concentrations and 2H enrichments in microvolumes of neonatal blood using gas chromatography-mass spectrometry. Anal Bioanal Chem 390:1403

    Article  Google Scholar 

  22. Gui RJ, Wang YF, Sun J (2014) Protein-stabilized fluorescent nanocrystals consisting of a gold core and a silver shell for detecting the total amount of cysteine and homocysteine. Microchim Acta 181:1231

    Article  CAS  Google Scholar 

  23. Deng JH, Lu QJ, Hou YX, Liu ML, Li HT, Zhang YY, Yao SZ (2015) Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal Chem 87:2195

    Article  CAS  Google Scholar 

  24. Amjadi M, Abolghasemi-Fakhri Z, Hallaj T (2015) Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J Photochem Photobiol A 309:8

    Article  CAS  Google Scholar 

  25. Hou J, Zhang FS, Yan X, Wang L, Yan J, Ding H, Ding L (2015) Sensitive detection of biothiols and histidine based on the recovered fluorescence of the carbon Quantum dots − Hg(II) system. Anal Chim Acta 859:72

    CAS  Google Scholar 

  26. Li Z, Wang Y, Ni YN, Kokot S (2015) A rapid and label-free dual detection of Hg(II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sensors Actuators B Chem 207:490

    Article  CAS  Google Scholar 

  27. Chao MR, Hu CW, Chen JL (2014) Fluorescent turn-on detection of cysteine using a molecularly imprinted polyacrylate linked to allylthiol-capped CdTe quantum dots. Microchim Acta 181:1085

    Article  CAS  Google Scholar 

  28. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735

    Article  CAS  Google Scholar 

  29. Eda G, Lin Y, Mattevi C, Yamaguchi H, Chen H, Chen I, Chen C, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505

    Article  CAS  Google Scholar 

  30. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79:4215

    Article  CAS  Google Scholar 

  31. Huang S, Wang LM, Zhu FW, Su W, Sheng JR, Huang CS, Xiao Q (2015) A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv 5:44587

    Article  CAS  Google Scholar 

  32. Zhao R, Lind J, Merényi G, Eriksen TE (1994) Kinetics of one-electron oxidation of thiols and hydrogen abstraction by thiyl radicals from –amino C-H bonds. J Am Chem Soc 116:12010

    Article  CAS  Google Scholar 

  33. Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515

    Article  Google Scholar 

  34. Orte A, Alvarez-Pez JM, Ruedas-Rama MJ (2013) Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 7:6378

    Article  Google Scholar 

  35. Wu HP, Huang CC, Cheng TL, Tseng WL (2008) Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine. Talanta 76:347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21563006, 21403039, 21203035), the Guangxi Natural Science Foundation (2013GXNSFCA019005, 2015GXNSFAA139033), and Guangxi Colleges and Universities Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Guangxi Teachers Education University.x

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xiao.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Wang, L., Huang, C. et al. Graphene quantum dot coupled with gold nanoparticle based “off-on” fluorescent probe for sensitive and selective detection of L-cysteine. Microchim Acta 183, 1855–1864 (2016). https://doi.org/10.1007/s00604-016-1822-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1822-7

Keywords

Navigation