Skip to main content
Log in

Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the preparation of a nanoporous flat electrode by drop casting a nanocomposite consisting of reduced graphene oxide (rGO) and chitosan onto a polyester substrate. An underlying conductive surface is not required. The nanocomposite was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The 3D network of the composite was used as a scaffold for the immobilization of glucose oxidase (GOx). A well-defined signal related to direct GOx electrochemistry was registered and used to monitor levels of glucose. The resulting biosensor displays a linear response to glucose with a detection limit of 5 μM (at an S/N ratio of 3) and a sensitivity of 41.7 μA⋅mM−1∙cm−2. The sensor was applied to the determination of glucose in artificial saliva.

A 3rd generation amperometric glucose biosensor based on nanoporous electrode was prepared by drop casting reduced graphene oxide and chitosan composite onto a polyester substrate and integrated within an electrochemical cell formed by screen-printed reference and counter electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu YH, Hu SS (2007) Biosensors based on direct electron transfer in redox proteins. Microchim Acta 159:1

    Article  CAS  Google Scholar 

  2. Periasamy AP, Chang YJ, Chen SM (2011) Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80:114

    Article  CAS  Google Scholar 

  3. Chen W, Ding Y, Akhigbe J, Brückner C, Li CM, Lei Y (2010) Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)-SWNTs composite electrodes. Biosens Bioelectron 26:504

    Article  CAS  Google Scholar 

  4. Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens Bioelectron 39:70

    Article  CAS  Google Scholar 

  5. Wang Y, Li H, Kong J (2014) Facile preparation of mesocellular graphene foam for direct glucose oxidase electrochemistry and sensitive glucose sensing. Sens Actuat B-Chem 193:708

    Article  CAS  Google Scholar 

  6. Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498

    Article  CAS  Google Scholar 

  7. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901

    Article  CAS  Google Scholar 

  8. Mani V, Devadas B, Chen SM (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309

    Article  CAS  Google Scholar 

  9. Kong FY, Gu SX, Li WW, Chen TT, Xu Q, Wang W (2014) A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens Bioelectron 56:77

    Article  CAS  Google Scholar 

  10. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181(9):865

    Article  CAS  Google Scholar 

  11. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175(1):1

    Article  CAS  Google Scholar 

  12. Ping J, Wu J, Wang Y, Ying Y (2012) Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron 34(1):70

    Article  CAS  Google Scholar 

  13. Randviir EP, Brownson DAC, Metters JP, Kadara RO, Banks CE (2014) The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. Phys Chem Chem Phys 16:4598

    Article  CAS  Google Scholar 

  14. Leenaerts O, Partoens B, Peeters FM (2009) Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys Rev B 79:235440

    Article  Google Scholar 

  15. Wang X, Bai H, Liu A, Shi G (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20:9032

    Article  CAS  Google Scholar 

  16. Zhou Y, Liu S, Jiang HJ, Yang H, Chen HY (2010) Direct electrochemistry and bioelectrocatalysis of microperoxidase-11 immobilized on chitosan-graphene nanocomposite. Eletroanalysis 22(12):1323

    Article  CAS  Google Scholar 

  17. Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Original Res Article, Talanta 81:334

    CAS  Google Scholar 

  18. Su C, Acik M, Takai K, Lu J, S-j H, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ, Loh KP (2012) Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun 3:1298

    Article  Google Scholar 

  19. Siu VS, Feng J, Flanigan PW, Palmore GTR, Pacifici D (2014) A “plasmonic cuvette”: dye chemistry coupled to plasmonic interferometry for glucose sensing. Nanophotonics 3(3):125

    Article  CAS  Google Scholar 

  20. Liang B, Fang L, Yang G, Hu Y, Guo X, Ye X (2013) Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens Bioelectron 43:131

    Article  CAS  Google Scholar 

  21. Qiu C, Wang X, Liu X, Hou S, Ma H (2012) Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor. Electrochim Acta 67:140

    Article  CAS  Google Scholar 

  22. Liu Y, Yuan R, Chai Y, Tang D, Dai J, Zhong X (2006) Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sens Actuat B-Chem 115(1):109

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 231.

  24. Choi BG, Im J, Kim HS, Park H (2011) Flow-injection amperometric glucose biosensors based on graphene/nafion hybrid electrodes. Electrochim Acta 56(27):9721

    Article  CAS  Google Scholar 

  25. Dai ZH, Ni J, Huang XH, Lu GF, Bao JC (2007) Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry 70(2):250

    Article  CAS  Google Scholar 

  26. Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed 48(32):5897

    Article  CAS  Google Scholar 

  27. Zhang X, Liao Q, Chu M, Liu S, Zhang Y (2014) Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens Bioelectron 52:281

    Article  CAS  Google Scholar 

  28. Wang J, Wang L, Di J, Tu Y (2008) Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles electrodeposited on indium tin oxide electrode. Sens Actuat B-Chem 135(1):283

    Article  CAS  Google Scholar 

  29. Cao H, Zhu Y, Tang L, Yang X, Li C (2008) A glucose biosensor based on immobilization of glucose oxidase into 3D macroporous TiO2. Electroanalysis 20(20):2223

    Article  CAS  Google Scholar 

  30. Li J, Dong S (1997) The electrochemical study of oxidation-reduction properties of horseradish peroxidase. J Electroanal Chem 431(1):19

    Article  CAS  Google Scholar 

  31. Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263

  32. Zhang J, Feng M, Tachikawa H (2007) Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes. Biosens Bioelectron 22(12):3036

    Article  CAS  Google Scholar 

  33. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  34. Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17(1):38

    Article  CAS  Google Scholar 

  35. Mutyala S, Mathiyarasu J (2014) Direct electron transfer at a glucose oxidase–chitosan-modified Vulcan carbon paste electrode for electrochemical biosensing of glucose. Appl Biochem Biotechnol 172(3):1517

    Article  CAS  Google Scholar 

  36. Liu Q, Lu X, Li J, Yao X, Li JH (2007) Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron 22(12):3203

    Article  CAS  Google Scholar 

  37. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147

    Article  CAS  Google Scholar 

  38. Wang B, Yan S, Shi Y (2015) Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing. J Solid State Electrochem 19(1):307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Tunisian Ministry of Higher Education and Scientific Research (MHESR) and the University of Tunis El-Manar for the support given to AR and WA (research and travel funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Raouafi.

Electronic supplementary material

ESM 1

(DOC 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabti, A., Argoubi, W. & Raouafi, N. Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase. Microchim Acta 183, 1227–1233 (2016). https://doi.org/10.1007/s00604-016-1753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1753-3

Keywords

Navigation