Skip to main content
Log in

Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe an electrochemical sensor for L-cysteine that is based on the use of Y2O3 nanoparticles (Y2O3-NPs) supported on nitrogen-doped reduced graphene oxide (N-rGO). The material was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical methods. Deposited on a carbon paste electrode, the material displays a strongly oxidation peak for L-cysteine at pH 7.0 (compared to an unmodified electrode). The current, measured at a potential 0.7 V (vs. Ag/AgCl), increases linearly in the 1.3 to 720 μM L-cysteine concentration range, and the detection limit is 0.8 μM. The sensor was successfully applied to the determination L-cysteine in spiked syrup.

Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide were synthesized. Based on this material, an electrochemical sensor for L-cysteine was fabricated. The sensor exhibits superior electrochemical performance for electrocatalytic oxidation and determination of L-cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu W, Luo J, Guo YM, Kou J, Li BX, Zhang ZJ (2014) Nanoparticle coated paper-based chemiluminescence device for the determination of L-cysteine. Talanta 120:336–341

    Article  CAS  Google Scholar 

  2. Cao ZY, Mou RX, Zhou R, Zhu ZW, Sun LH, Chen MX (2015) A novel method for the simultaneous analysis of seven biothiols in rice (Oryza sativa L.) using hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry. J Chromatogr B 976–977:19–26

    Article  Google Scholar 

  3. Murugavelu M, Karthikeyan B (2014) Study of Ag–Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine. Superlattice Microst 75:916–926

    Article  CAS  Google Scholar 

  4. Ge SG, Yan M, Lu JJ, Zhang M, Yu F, Yu JH, Song XR, Yu SL (2012) Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosens Bioelectron 31:49–54

    Article  CAS  Google Scholar 

  5. Silva FAS, Silva MGA, Lima PR, Meneghetti MR, Kubota LT, Goulart MOF (2013) A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosens Bioelectron 50:202–209

    Article  CAS  Google Scholar 

  6. Santhiago M, Vieira IC (2007) L-cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryzae. Sensors Actuators B Chem 128:279–285

    Article  CAS  Google Scholar 

  7. Inoue T, Kirchhoff JR (2002) Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline Quinone modified electrode. Anal Chem 74:1349–1354

    Article  CAS  Google Scholar 

  8. Su WY, Cheng SH (2008) Electrocatalysis and sensitive determination of cysteine at poly(3,4-ethylenedioxythiophene)-modified screen-printed electrodes. Electrochem Commun 10:899–902

    Article  CAS  Google Scholar 

  9. Kalimuthu P, John SA (2009) Evaluation of potassium ferrate(VI) cathode material coated with 2,3-naphthalocyanine for alkaline super iron battery. Electrochem Commun 11:367–370

    Article  CAS  Google Scholar 

  10. Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484

    Article  CAS  Google Scholar 

  11. Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  CAS  Google Scholar 

  12. Yang GH, Li LL, Rana RK, Zhu JJ (2013) Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon 61:357–366

    Article  CAS  Google Scholar 

  13. Zhou CW, Kong J, Yenilmez E, Dai HJ (2000) Modulated chemical doping of individual carbon nanotubes. Science 290:1552–1555

    Article  CAS  Google Scholar 

  14. Jiang D, Liu Q, Wang K, Qian J, Dong XY, Yang ZT, Du XJ, Qiu BJ (2014) Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens Bioelectron 54:273–278

    Article  CAS  Google Scholar 

  15. Luo SP, Chen Y, Xie AJ, Kong Y, Wang B, Yao C (2014) Nitrogen doped graphene supported Ag nanoparticles as electrocatalysts for oxidation of glucose. ECS Electrochem Lett 3:B20–B22

    Article  CAS  Google Scholar 

  16. Wang G, Bai JT, Wang YH, Ren ZY, Bai JB (2011) Preparation and electrochemical performance of a cerium oxide–graphene nanocomposite as the anode material of a lithium ion battery. Scr Mater 65:339–342

    Article  CAS  Google Scholar 

  17. Li YQ, Qu JY, Gao F, Lv SY, Shi L, He CX, Sun JC (2015) In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Appl Catal B Environ 162:268–274

    Article  CAS  Google Scholar 

  18. Ma ZL, Huang XB, Dou S, Wu JH, Wang SY (2014) One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J Phys Chem C 118:17231–17239

    Article  CAS  Google Scholar 

  19. Xu X, Tan H, Xi K, Ding SJ, Yu DM, Cheng SD, Yang G, Peng XY (2015) Vasant Kumar AFR, bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life. Carbon 84:491–499

    Article  CAS  Google Scholar 

  20. Jung KW, Yang DC, Park CN, Park CJ, Choi J (2010) Effects of the addition of ZnO and Y2O3 on the electrochemical characteristics of a Ni(OH)2 electrode in nickel metal hydride secondary batteries. Int J Hydrog Energy 35:13073–13077

    Article  CAS  Google Scholar 

  21. Ju BW, Wang XY, Wu C, Yang XK, Shu HB, Bai YS, Wen WC, Yi X (2014) Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery. J Alloys Compd 584:454–460

    Article  CAS  Google Scholar 

  22. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  23. Zhang Y, Yuan SS, Zhao YH, Wang HG, He CD (2014) Synthesis of novel yttrium-doped grapheme oxide nanocomposite for dye removal. J Mater Chem A 2:7897–7903

    Article  CAS  Google Scholar 

  24. Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon SH (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102

    Article  CAS  Google Scholar 

  25. Han Z, Tang Z, Li P, Yang G, Zheng Q, Yang J (2013) Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale 5:5462–5467

    Article  CAS  Google Scholar 

  26. Su C, Loh KP (2012) Carbocatalysts: graphene oxide and its derivatives. Acc Chem Res 46:2275–2285

    Article  Google Scholar 

  27. Sivaraman KM, Ergeneman O, Pane S, Pellicer E, Sort J, Shou K, Surinach S, Baro MD, Nelson BJ (2011) Electrodeposition of cobalt yttriumhy droxide/oxide nanocomposite films from particle-free aqueous baths containing chloride salts. Electrochim Acta 56:5142–5150

    Article  CAS  Google Scholar 

  28. Ralph TR, Hitchman ML, Millington JP, Walsh FC (1994) The electrochemistry of L-cystine and L-cysteine: part 1: thermodynamic and kinetic studies. J Electroanal Chem 375:1–15

    Article  CAS  Google Scholar 

  29. Devasenathipathy R, Karuppiah C, Chen SM, Mani V, Vasantha VS, Ramaraj S (2015) Selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin. Microchim Acta 182:727–735

    Article  CAS  Google Scholar 

  30. Majidi MR, Asadpour-Zeynali K, Hafezi B (2010) Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure. Microchim Acta 169:283–288

    Article  CAS  Google Scholar 

  31. Liu Z, Zhang H, Hou S, Ma H (2012) Highly sensitive and selective electrochemical detection of L-cysteine using nanoporous gold. Microchim Acta 177:427–433

    Article  CAS  Google Scholar 

  32. Ye ML, Xu B, Zhang WD (2011) Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine. Microchim Acta 172:439–446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Nature Science Foundation of Anyang Normal University and National Natural Science Foundation of China (NSFC, No. 21102005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbo Qu.

Electronic supplementary material

ESM 1

(DOC 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, G., Wang, Y. et al. Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim Acta 183, 1351–1357 (2016). https://doi.org/10.1007/s00604-015-1737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1737-8

Keywords

Navigation