Skip to main content
Log in

Colorimetric determination of aluminum(III) based on the aggregation of Schiff base-functionalized gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a colorimetric method for the determination of Al(III) using surface modified gold nanoparticles (AuNPs). Citrate capped AuNPs were functionalized, by self-assembly, with the Schiff base obtained from 2-hydroxy-1-naphthaldehyde and 2-aminoethanethiol. The modified AuNPs were characterized by transmission electron microscopy and FTIR. Complexation of Al(III) ions by the Schiff base on the AuNPs results in self-aggregation of the AuNPs which is accompanied by a color change from red to blue which can be monitored visually or by UV–vis spectroscopy. Absorbance varies linearly with the Al(III) concentration in the range from 9 to 23 μM, and the lower detection limit is 0.29 μM (at 3 So/k). The method was applied to the determination of Al(III) in (spiked) samples of boiler water and urine.

A colorimetric method for the determination of Al(III) using Schiff base-functionalized gold nanoparticles (AuNPs) is developed based on the complexation of Al(III) leading to the aggregation of the AuNPs and a color change from red to blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kepp KP (2012) Bioinorganic chemistry of Alzheimer’s disease. Chem Rev 112:5193–5239

    Article  CAS  Google Scholar 

  2. Mendez-Aèlvarez E, Soto-Otero R, Hermida-Ameijeiras A, Lopez-Real AM, Labandeira-Garc JL (2001) Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1586:155–168

    Article  Google Scholar 

  3. Wills MR, Savory J (1983) Aluminium poisoning: dialysis encephalopathy, osteomalacia, and anaemia. Lancet 2:29–34

    Article  CAS  Google Scholar 

  4. Krejpcio Z, Wójciak RW (2002) The influence of Al3+ ions on pepsin and trypsin activity in vitro. Pol J Environ Stud 11:251–254

    CAS  Google Scholar 

  5. Frankowski M, Zioła-Frankowska A, Siepak J (2010) New method for speciation analysis of aluminium fluoride complexes by HPLC–FAAS hyphenated technique. Talanta 80:2120–2126

    Article  CAS  Google Scholar 

  6. Chen B, Zeng Y, Hu B (2010) Study on speciation of aluminum in human serum using zwitterionic bile acid derivative dynamically coated C18 column HPLC separation with UV and on-line ICP-MS detection. Talanta 81:180–186

    Article  CAS  Google Scholar 

  7. Wang H, Yu Z, Wang Z, Hao H, Chen Y, Wan P (2011) Preparation of a preplated bismuth film on Pt electrode and its application for determination of trace aluminum(III) by adsorptive stripping voltammetry. Electroanalysis 23:1095–1099

    Article  CAS  Google Scholar 

  8. Arduini M, Felluga F, Mancin F, Rossi P, Tecilla P, Tonellato U, Valentinuzzi N (2003) Aluminium fluorescence detection with a FRET amplified chemosensor. Chem Commun 13:1606–1607

    Article  CAS  Google Scholar 

  9. Maity D, Govindaraju T (2010) Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al3+ sensor. Chem Commun 46:4499–4501

    Article  CAS  Google Scholar 

  10. Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg Chem 51:3597–3602

    Article  CAS  Google Scholar 

  11. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  12. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  13. Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA–gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533

    Article  CAS  Google Scholar 

  14. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  15. Sung YM, Wu SP (2014) Colorimetric detection of Cd(II) ions based on di-(1H-pyrrol-2-yl) methanethione functionalized gold nanoparticles. Sensors Actuators B 201:86–91

    Article  CAS  Google Scholar 

  16. Chai F, Wang CG, Wang TT, Li L, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470

    Article  CAS  Google Scholar 

  17. Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849

    Article  CAS  Google Scholar 

  18. Mehta VN, Kumar MA, Kailasa SK (2013) Colorimetric detection of copper in water samples using dopamine dithiocarbamate-functionalized Au nanoparticles. Ind Eng Chem Res 52:4414–4420

    Article  CAS  Google Scholar 

  19. Lee YF, Nan FH, Chen MJ, Wu HY, Ho CW, Chen YY, Huang CC (2012) Detection and removal of mercury and lead ions by using gold nanoparticle-based gel membrane. Anal Methods 4:1709–1717

    Article  CAS  Google Scholar 

  20. Liu R, Chen ZP, Wang SS, Qu CL, Chen LX, Wang Z (2013) Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles. Talanta 112:37–42

    Article  CAS  Google Scholar 

  21. Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069

    Article  CAS  Google Scholar 

  22. Li XK, Wang J, Sun LL, Wang ZX (2010) Gold nanoparticle-based colorimetric assay for selective detection of aluminium cation on living cellular surfaces. Chem Commun 46:988–990

    Article  CAS  Google Scholar 

  23. Zhang M, Liu YQ, Ye BC (2012) Mononucleotide-modified metal nanoparticles: an efficient colorimetric probe for selective and sensitive detection of aluminum(III) on living cellular surface. Chem Eur J 18:2507–2513

    Article  CAS  Google Scholar 

  24. Chang YJ, Hung PJ, Wan CF, Wu AT (2014) A highly selective fluorescence turn-on and reversible sensor for Al3+ ion. Inorg Chem Commun 39:122–125

    Article  CAS  Google Scholar 

  25. Liu X, Lin Q, Wei TB, Zhang YM (2014) A highly selective colorimetric chemosensor for detection of nickel ions in aqueous solution. New J Chem 38:1418–1423

    Article  CAS  Google Scholar 

  26. Frens G (1973) Controlled nucleation for the regulation of particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  27. Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 75:1215–1217

    Article  Google Scholar 

  28. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surface. Langmuir 21:9303–9307

    Article  CAS  Google Scholar 

  29. Guidelines for Drinking Water Quality (2004) World Health Organization, three edn. Geneva, 397, pp 301–311

  30. Chen S, Fang YM, Xiao Q, Li J, Li SB, Chen HJ, Sun JJ, Yang HH (2012) Rapid visual detection of aluminium ion using citrate capped gold nanoparticles. Analyst 137:2021–2023

    Article  CAS  Google Scholar 

  31. Xue DS, Wang HY, Zhang YB (2014) Specific and sensitive colorimetric detection of Al3+ using 5-mercaptomethyltetrazole capped gold nanoparticles in aqueous solution. Talanta 119:306–311

    Article  CAS  Google Scholar 

  32. Yang NN, Gao YX, Zhang YJ, Shen ZY, Wu AG (2014) A new rapid colorimetric detection method of Al3+ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles. Talanta 122:272–277

    Article  CAS  Google Scholar 

  33. Mu XY, Qi L, Qiao J, Ma HM (2014) One-pot synthesis of tyrosine-stabilized fluorescent gold nanoclusters and their application as turn-on sensors for Al3+ ions and turn-off sensors for Fe3+ ions. Anal Methods 6:6445–6451

    Article  CAS  Google Scholar 

  34. Zhou TY, Lin LP, Rong MC, Jiang YQ, Chen X (2013) Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal Chem 85:9839–9844

    Article  CAS  Google Scholar 

  35. Zou Y, Yan FY, Dai LF, Luo YM, Fu Y, Yang N, Wun JY, Chen L (2014) High photoluminescent carbon nanodots and quercetin-Al3+ construct a ratiometric fluorescent sensing system. Carbon 77:1148–1156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by Natural Science Foundation of China (no. 21365014, 21505067), Jiangxi Province Natural Science Foundation (JXNSF no. 20132BAB203011), and Doctoral Start-up Funding of Nanchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangying Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Li, J., Liu, X. et al. Colorimetric determination of aluminum(III) based on the aggregation of Schiff base-functionalized gold nanoparticles. Microchim Acta 183, 863–869 (2016). https://doi.org/10.1007/s00604-015-1734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1734-y

Keywords

Navigation