Skip to main content
Log in

Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter Oxydans and graphene oxide or graphene-platinum hybrid nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have performed a study on the performance of two microbial glucose sensors based on immobilized Gluconobacter oxydans (G. oxydans). The first one was prepared by modifying a glassy carbon paste electrode (GCPE) containing the microbial cells with graphene oxide (GO), the other one by modifying it with graphene-platinum hybrid nanoparticles (graphene-Pt NPs). The electrode was characterized by following the voltammetric signals of the oxidation of hexacyanoferrate(II) to hexacyanoferrate(III) via the oxidative enzymes contained in G. oxydans which convert glucose to gluconic acid. Optimizations were conducted with a conventional GCPE containing G. oxydans. After material optimization, the biosensors were applied to the determination of glucose. The linear and analytical ranges for GO based biosensor range from 1 to 75 μM (linear) and 1 to 100 μM (analytical), respectively, with a limit of detection (LOD) of (3 s/m) 1.06 μM (at an S/m of 3). On the other hand, the graphene-Pt hybrid nanoparticle based biosensor showed two linear ranges (from 0.3 to 1 µM and from 1 to 10 μM), a full analytical range from 1 to 50 μM, and an LOD of 0.015 μM. The graphene-Pt hybrid NP based sensors performs better and was applied to the determination of glucose in synthetically prepared plasma samples where it gave recoveries as 101.8 and 104.37 % for two different concentrations. Selectivity studies concerning fructose, galactose, L-ascorbic acid and dopamine were also conducted.

The electrochemical performances of graphene oxide and graphene-platinum hybrid nanoparticle modified G. oxydans biosensors were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anik Ü, Çevik S, Pumera M (2010) Effect of nitric acid “washing” procedure on electrochemical behavior of carbon nanotubes and glassy carbon μ-particles. Nanoscale Res Lett 5:846–852

    Article  CAS  Google Scholar 

  2. Çevik S, Anik Ü (2010) Banana tissue-nanoparticle/nanotube based glassy carbon paste electrode biosensors for catechol detection. Sens Lett 8:667–671

    Article  Google Scholar 

  3. Apetrei I, Apetrei C (2015) The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products. J Food Eng 149:1–8

    Article  CAS  Google Scholar 

  4. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    Article  CAS  Google Scholar 

  5. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Article  CAS  Google Scholar 

  6. Bo Y, Yang H, Hu Y, Yao T, Huang S (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56:2676–2681

    Article  CAS  Google Scholar 

  7. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  8. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613

    Article  CAS  Google Scholar 

  9. Khim Chng EL, Chua CK, Pumera M (2014) Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale 6(18):10792–10797

    Article  CAS  Google Scholar 

  10. Georgakilas V, Gournisb D, Tzitziosa V, Pasquato L, Guldie DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 26:2679–2694

    Article  Google Scholar 

  11. Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  12. Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171

    Article  CAS  Google Scholar 

  13. Xing YC (2004) Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J Phys Chem B 108:19255–19259

    Article  CAS  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  15. Sultan SC, Anik Ü (2014) Gr–Pt hybrid NP modified GCPE as label and indicator free electrochemical genosensor platform. Talanta 129:523–528

    Article  CAS  Google Scholar 

  16. Tepeli Y, Anik U (2015) Comparison of performances of bioanodes modified with graphene oxide and graphene-platinum hybrid nanoparticles. Electrochem Commun. doi:10.1016/j.elecom.2015.05.002

    Google Scholar 

  17. Alferov SV, Tomashevskaya LG, Ponamoreva ON, Bogdanovskaya VA, Reshetilov AN (2006) Biofuel cell anode based on the gluconobacter oxydans bacteria cells and 2,6-dichlorophenolindophenol as an electron transport mediator. Elektrokhimiya 42:456–457

    Google Scholar 

  18. Tkac J, Svitel J, Vostiar I, Navratil M, Gemeiner P (2009) Membrane-bound dehydrogenases from gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry 76:53–62

    Article  CAS  Google Scholar 

  19. Hummers WSJ, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  20. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  21. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Systematic post-assembly modification of graphene oxide paper with primary alkylamines. Nature 442:282–286

    Article  CAS  Google Scholar 

  22. Vostiar I, Ferapontova EE, Gorton L (2004) Electrical wiring of viable Gluconobacter oxydans cells with flexible osmium-redox polyelectrolyte. Electrochem Commun 6:621–626

    Article  CAS  Google Scholar 

  23. Gatgens C, Degner U, Bringer-Meyer S, Hermann U (2007) Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol 76:553–559

    Article  Google Scholar 

  24. Coldur F, Andac M, Isildak I (2010) Flow-injection potentiometric applications of solid state Li+ selective electrode in biological and pharmaceutical samples. J Solid State Electrochem 14:2241–2249

    Article  CAS  Google Scholar 

  25. Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:983–988

    Article  CAS  Google Scholar 

  26. Tkac J, Vostiar I, Gorton L, Gemeiner P, Sturdık E (2003) Improved selectivity of microbial biosensor using membrane coating. Biosens Bioelectron 18:1125–1134

    Article  CAS  Google Scholar 

  27. Matsuo Y, Miyabe T, Fukutsuka T, Sugie Y (2007) Preparation and characterization of alkylamine-intercalated graphite oxides. Carbon 45:1005–1012

    Article  CAS  Google Scholar 

  28. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  29. Herrera-Alonso M, Abdala AA, McAllister MJ, Aksay IA, Prud’homme RK (2007) Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir 23:10644–10649

    Article  CAS  Google Scholar 

  30. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2007) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  31. Zhang L, Li N, Jiu H, Qi G, Huang Y (2015) ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceram Int 41:6256–6262

    Article  CAS  Google Scholar 

  32. Yildirim N, Odaci Demirkol D, Timur S (2015) Modified gold surfaces with gold nanoparticles and 6-(ferrocenyl)hexanethiol: design of a mediated microbial sensor. Electroanalysis 27:52–57

    Article  CAS  Google Scholar 

  33. Sharifirad M, Kiani F, Koohyar F (2014) Design of a microbial sensor using a conducting polymer of polyaniline/poly 4,4’-diaminodiphenyl sulphone-silver nanocomposite films on a carbon paste electrode. Mater Technol 48:209–214

    CAS  Google Scholar 

  34. Guler E, Soyleyici HC, Odaci Demirkol D, Ak M, Timur S (2014) A novel functional conducting polymer as an immobilization platform. Mater Sci Eng C 40:148–156

    Article  CAS  Google Scholar 

  35. Yılmaz Ö, Odacı Demirkol D, Gülcemal S, Kılınc A, Timur S, Cetinkaya B (2012) Chitosan–ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors. Colloids Surf B: Biointerfaces 100:62–68

    Article  Google Scholar 

Download references

Acknowledgments

The grant from Muğla Sıtkı Koçman University BAP Project number 13 / 17 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülkü Anik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, S., Anik, Ü. Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter Oxydans and graphene oxide or graphene-platinum hybrid nanoparticles. Microchim Acta 183, 73–81 (2016). https://doi.org/10.1007/s00604-015-1590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1590-9

Keywords

Navigation