Skip to main content
Log in

Radial dependence of DNA translocation velocity in a solid-state nanopore

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

The physical features (such as size and charge) of a molecule transiting a nanopore whose cross-section area is only slightly larger than that of the molecule can be inferred from the measured ion-current through the pore. The transport of DNA molecules through nanopores has been extensively studied in the hope to enable low-cost and high-throughput DNA sequencing. However, the experimentally measured velocities of DNA translocation have a wide distribution, and this compromises the sequencing. In order to better understand the origin of the wide distribution, I have carried out molecular dynamics simulations to study the radial dependence of the translocation velocity. The results suggest a stick-slip type of motion of the dsDNA near the pore surface and a smooth translocation of the dsDNA near the pore center. The smooth dsDNA translocation (with a constant velocity) is governed by the zeta-potential of the pore surface which can be modified by adjusting the pH value and/or the ion concentration of the bulk electrolyte. This enables the mean translocation velocity of the dsDNA to be tuned and reduced. In addition, simulation results suggest that the smooth transport of dsDNA can be achieved by minimizing the dsDNA’s interaction with the pore, for example by chemical modification of its surface.

The smooth transport of DNA inside a solid-state nanopore can be achieved by repelling DNA away from the pore surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463

    Article  CAS  Google Scholar 

  2. Branton D, Deamer D, Marziali A, Bayley H, Benner S, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X et al (1146) The potential and challenges of nanopore sequencing. Nat Biotech 26

  3. Venkatesan B, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotech 6(10):615–624

    Article  CAS  Google Scholar 

  4. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13,770

    Article  CAS  Google Scholar 

  5. Dekker C (2007) Solid-state nanopores. Nat Nanotech 2:209–215

    Article  CAS  Google Scholar 

  6. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169

    Article  CAS  Google Scholar 

  7. Luan B (2015) Numerically testing phenomenological models for conductance of a solid-state nanopore. Nanotechnology 055(5):502

    Google Scholar 

  8. Zhang S, Sun T, Wang J (2015) Biomimetic phosphate assay based on nanopores obtained by immobilization of zirconium (iv) on a film of polyethyleneimine. Microchim Acta 182(7-8):1387

    Article  CAS  Google Scholar 

  9. Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci USA 97:1079

    Article  CAS  Google Scholar 

  10. Fologea D, Uplinger J, Thomas B, McNabb D S, Li J (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5:1734–1737

    Article  CAS  Google Scholar 

  11. Anderson BN, Muthukumar M, Meller A (2013) pH tuning of DNA translocation time through organically functionalized nanopores. ACS nano 7(2):1408

    Article  CAS  Google Scholar 

  12. Peng H, Ling X (2009) Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20:185,101

    Article  Google Scholar 

  13. Hyun C, Kaur H, Rollings R, Xiao M, Li J (2013) Threading immobilized dna molecules through a solid-state nanopore at > 100 μs per base rate. Acs Nano 7(7):5892

    Article  CAS  Google Scholar 

  14. Van Dorp S, Keyser U, Dekker N, Dekker C, Lemay S (2009) Origin of the electrophoretic force on DNA in solid-state nanopores. Nat Phys 5:347

    Article  CAS  Google Scholar 

  15. Polonsky S, Rossnagel S, Stolovitzky G (2007) Nanopore in metal-dielectric sandwich for DNA position control. Appl Phys Lett 91:153, 103

    Article  Google Scholar 

  16. Luan B, Peng H, Polonsky S, Rossnagel S, Stolovitzky G, Martyna G (2010) Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. Phys Rev Lett 104(23):238,103

    Article  Google Scholar 

  17. Luan BQ, Aksimentiev A (2008) Electro-osmotic screening of the DNA charge in a nanopore. Phys Rev E 78:021,912

    Article  Google Scholar 

  18. He Y, Tsutsui M, Fan C, Taniguchi M, Kawai T (2011) Controlling dna translocation through gate modulation of nanopore wall surface charges. ACS nano 5(7):5509

    Article  CAS  Google Scholar 

  19. Yeh L H, Zhang M, Qian S, Hsu JP (2012) Regulating dna translocation through functionalized soft nanopores. Nanoscale 4(8):2685

    Article  CAS  Google Scholar 

  20. Carson S, Wilson J, Aksimentiev A, Wanunu M (2014) Smooth dna transport through a narrowed pore geometry. Biophys J 107(10):2381

    Article  CAS  Google Scholar 

  21. Van Beest B, Kramer G, Van Santen R (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958

    Article  CAS  Google Scholar 

  22. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781

    Article  CAS  Google Scholar 

  23. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: Improving the description of α/ γ conformers. Biophys J 92:3817

    Article  CAS  Google Scholar 

  24. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  25. Beglov D, Roux B (1994) Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J Chem Phys 100:9050

    Article  CAS  Google Scholar 

  26. Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110 :21, 497

    Article  CAS  Google Scholar 

  27. Brünger AT (1992) X-PLOR, Version 3.1: A System for X-ray Crystallography and NMR, The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry. Yale University

  28. Wanunu M, Sutin J, McNally B, Chow A, Meller A (2008) DNA translocation governed by interactions with solid-state nanopores. Biophys J 95(10):4716

    Article  CAS  Google Scholar 

  29. Maffeo C, Yoo J, Comer J, Wells D, Luan B, Aksimentiev A (2014) Close encounters with DNA. J Phys: Condens Matter 413(41):101

    Google Scholar 

  30. Ghosal S (2007) Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys Rev Lett 98:238,104

    Article  Google Scholar 

  31. Luan B, Stolovitzky G (2013) An electro-hydrodynamics-based model for the ionic conductivity of solid-state nanopores during DNA translocation. Nanotechnology 195(19):702

    Google Scholar 

  32. Luan B, Wang C, Royyuru A, Stolovitzky G (2014) Controlling the motion of DNA in a nanochannel with transversal alternating electric voltages. Nanotechnology 265(26):101

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge useful discussion with Gustavo Stolovitzky and generous financial support from the IBM Bluegene Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binquan Luan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, B. Radial dependence of DNA translocation velocity in a solid-state nanopore. Microchim Acta 183, 995–1002 (2016). https://doi.org/10.1007/s00604-015-1589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1589-2

Keywords

Navigation