Skip to main content
Log in

Preparation of brightly fluorescent silica nanoparticles modified with lucigenin and chitosan, and their application to an aptamer-based sandwich assay for thrombin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the preparation of fluorescent silica nanoparticles (SiNPs) modified with chitosan and lucigenin by using a reverse microemulsion method. The introduction of chitosan to the lucigenin doped SiNPs is shown to improve the fluorescence quantum yield. The modified SiNPs were used as fluorescent markers in an aptamer-based method for selective determination of thrombin. In this protocol, thrombin was sandwiched between streptavidin-coated magnetic beads and the fluorescent SiNPs modified with a thrombin-binding aptamer. The method was successfully applied to the determination of thrombin in human serum and showed a detection limit as low as 0.02 nM. In our perception, the protocol presented here is promising in that such SiNPs may be applied to the sensitive fluorescent detection of other analytes by changing the corresponding aptamer.

The introduction of chitosan to the lucigenin doped SiNPs is shown to improve the fluorescence quantum yield. The modified SiNPs were used as fluorescent markers in an aptamer-based method for selective determination of thrombin. The effect of chitosan concentration on fluorescence intensity of lucigenin/SiO2 nanoparticles (the volume of chitosan solution is 100 μL)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao J, Chen K, Luong R, Bouley D, Mao H, Qiao T, Gambhir S, Cheng Z (2012) A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett 12:281–286

    Article  Google Scholar 

  2. Tang F, He F, Cheng H, Li L (2010) Self-assembly of conjugated polymer-Ag@SiO2 hybrid fluorescent nanoparticles for application to cellular imaging. Langmuir 26:11774–11778

    Article  CAS  Google Scholar 

  3. Linares E, Pannuti C, Kubota L, Thalhammer S (2013) Immunospot assay based on fluorescent nanoparticles for Dengue fever detection. Biosens Bioelectron 41:180–185

    Article  CAS  Google Scholar 

  4. Huang X, Aguilar Z, Li H, Lai W, Wei H, Xu H, Xiong Y (2013) Fluorescent Ru(phen)3 2+- doped silica nanoparticles-based ICTS sensor for quantitative detection of enrofloxacin residues in chicken meat. Anal Chem 85:5120–5128

    Article  CAS  Google Scholar 

  5. Bagwe R, Yang C, Hilliard L, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20:8336–8342

    Article  CAS  Google Scholar 

  6. Ow H, Larson D, Srivastava M, Baird WW, Wiesner U (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5:113–117

    Article  CAS  Google Scholar 

  7. Zhao X, Bagwe R, Tan W (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16:173–176

    Article  CAS  Google Scholar 

  8. Wang L, Wang K, Santra S, Zhao X, Hilliard L, Smith J, Wu J, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654

    Article  Google Scholar 

  9. Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24:621–638

    Article  CAS  Google Scholar 

  10. Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W, Lee E, Tan W (2006) FloDots: luminescent nanoparticles. Anal Bioanal Chem 385:518–524

    Article  CAS  Google Scholar 

  11. Bakalova R, Zhelev Z, Aoki I, Masamoto K, Mileva M, Obata T, Higuchi M, Gadjeva V, Kanno I (2008) Multimodal silica-shelled quantum dots: direct intracellular delivery, photosensitization, toxic, and microcirculation effects. Bioconjugate Chem 19:1135–1142

    Article  CAS  Google Scholar 

  12. Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

  13. Piao Y, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18:1–14

    Google Scholar 

  14. Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  15. Ow H, Larson D, Srivastava M, Baird B, Webb W, Wiesner U (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5:113–117

    Article  CAS  Google Scholar 

  16. Lian W, Litherland S, Badrane H, Tan W, Wu D, Baker H, Gulig P, Lim JS (2004) Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem 334:135–144

    Article  CAS  Google Scholar 

  17. Rossi L, Shi L, Quina F, Rosenzweig Z (2005) Stoeber synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. Langmuir 21:4277–4280

    Article  CAS  Google Scholar 

  18. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50:4056–4066

    Article  CAS  Google Scholar 

  19. Larson S, Ow H, Vishwasrao H, Heikal A, Wiesner U, Webb W (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20:2677–2684

    Article  CAS  Google Scholar 

  20. Aslan K, Wu M, Lakowicz J, Geddes C (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525

    Article  CAS  Google Scholar 

  21. Martini M, Perriat P, Montagna M, Pansu R, Julien C, Tillement O, Roux S (2009) How gold particles suppress concentration quenching of fluorophores encapsulated in silica beads. J Phys Chem C 113:17669–17677

    Article  CAS  Google Scholar 

  22. Tian R, Qu Y, Zheng X (2014) Amplified fluorescence quenching of lucigenin self-assembled inside silica/chitosan nanoparticles by Cl. Anal Chem 86:9114–9121

    Article  CAS  Google Scholar 

  23. Kong R, Zhang X, Chen Z, Tan W (2011) Aptamer-assembled nanomaterials for biosensing and biomedical applications. Small 7:2428–2436

    CAS  Google Scholar 

  24. Ma D, Kell A, Tan S, Jakubek Z, Simard B (2009) Photophysical properties of dye-doped silica nanoparticles bearing different types of dye-silica interactions. J Phys Chem C 113:15974–15981

    Article  CAS  Google Scholar 

  25. Huber C, Krause C, Werner T, Wolfbeis O (2003) Serum chloride optical sensors based on dynamic quenching of the fluorescence of photo-immobilized lucigenin. Microchim Acta 142:245–253

    Article  CAS  Google Scholar 

  26. Xu Z, Huang X, Dong C, Ren J (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181:723–730

    Article  CAS  Google Scholar 

  27. Zhang H, Shuang S, Sun L, Chen A, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196

    Article  CAS  Google Scholar 

  28. Wang X, Zhao Q (2012) A fluorescent sandwich assay for thrombin using aptamer modified magnetic beads and quantum dots. Microchim Acta 178:349–355

    Article  CAS  Google Scholar 

  29. Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron 55:231–236

    Article  Google Scholar 

  30. Sinha B, Ramulu T, Kim K, Venu R, Lee J, Kim C (2014) Planar Hall magnetoresistive aptasensor for thrombin detection. Biosens Bioelectron 59:140–144

    Article  CAS  Google Scholar 

  31. Cunningham J, Brenes N, Crooks R (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 86:6166–6170

    Article  CAS  Google Scholar 

  32. Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron: 56231–56236

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant 21375085) and Innovation Funds for Graduate Programs of Shaanxi Normal University (No. 2011CXB009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Zheng, X. Preparation of brightly fluorescent silica nanoparticles modified with lucigenin and chitosan, and their application to an aptamer-based sandwich assay for thrombin. Microchim Acta 182, 2193–2199 (2015). https://doi.org/10.1007/s00604-015-1554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1554-0

Keywords

Navigation