Skip to main content
Log in

A regenerable fluorescent quantum dot based nanoprobe for zinc(II), and the design of a molecular logic gate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a simple, sensitive and regenerable fluorescent nanoprobe for Zn(II) ion. It is based on the use of glutathione capped CdTe quantum dots (GSH-CdTe Q-dots). The bright fluorescence of these Q-dots is quenched on addition of diethylenetriaminepentaacetic acid (DTPA) due to the binding of DTPA to GSH. If, however, Zn(II) is added, it will bind DTPA and detach it from the surface of the Q-dots, this resulting in the fluorescence recovery. Under optimum conditions, the intensity of the restored fluorescence is proportional to the concentration of Zn(II) in the 0.48 to 90 μmol · L−1 range, with a limit of detection of 0.14 μmol · L−1. The nanoprobe was applied to the determination of Zn(II) in spiked tap water and river water and gave satisfactory results. The findings were also applied to design a molecular logic gate where DTPA acts as the first input to the system by quenching the fluorescence of the GSH-CdTe Q-dots. Zn(II) acts as the second input and causes the detachment of DTPA from the Q-dots and a restoration of fluorescence. This system therefore represents a new IMP (IMPLICATION) logic gate.

We describe a fluorescent nanoprobe for Zn(II) based on quantum dots, and its use in an IMP molecular logic gate. The nanoprobe was successfully applied to the determination of Zn(II) in spiked tap water and river water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  CAS  Google Scholar 

  2. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68(suppl):447S–63S

    CAS  Google Scholar 

  3. Bush AI (2000) Metal and neuroscience. Curr Opin Chem Biol 4:184–191

    Article  CAS  Google Scholar 

  4. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534

    Article  CAS  Google Scholar 

  5. Jurowski K, Szewczyk B, Nowak G, Piekoszewski W (2014) Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J Biol Inorg Chem 19:1069–1079

    Article  CAS  Google Scholar 

  6. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  CAS  Google Scholar 

  7. Voegelin A, Peister S, Scheinost AC, Marcus MA, Kretzschmar R (2005) Changes in zinc speciation in field soil after contamination with zinc oxide. Environ Sci Technol 39:6616–6623

    Article  CAS  Google Scholar 

  8. Wilhartitz P, Dreer S, Krismer R, Bobleter O (1997) High performance ultra trace analysis in molybdenum and tungsten accomplished by on-line coupling of Ion chromatography with simultaneous ICP-AES. Microchim Acta 125:45–52

    Article  CAS  Google Scholar 

  9. Kara D, Fisher A, Hill SJ (2005) Preconcentration and determination of trace elements with 2, 6-diacetylpyridine functionalized Amberlite XAD-4 by flow injection and atomic spectroscopy. Analyst 130:1518–1523

    Article  CAS  Google Scholar 

  10. Li Q, Zhao XH, Lv QZ, Liu GG (2007) The determination of zinc in water by flame atomic absorption spectrometry after its separation and preconcentration by malachite green loaded microcrystalline triphenylmethane. Sep Purif Technol 55:76–81

    Article  CAS  Google Scholar 

  11. Ciglenečki I, Bura-Nakić E, Inzelt G (2007) Voltammetry as an alternative tool for trace metal detection in peloid marine sediments. Electroanalysis 19:1437–1445

    Article  Google Scholar 

  12. Srivastava SK, Gupta VK, Jain S (1996) PVC-based 2,2,2-cryptand sensor for zinc ions. Anal Chem 68:1272–1275

    Article  CAS  Google Scholar 

  13. AL-Kindy SMZ, Al-Hinai KH, Suliman FEO, Al-Lawati HJ, Pillay A (2011) Development of a selective fluorimetric technique for rapid trace determination of zinc using 3-hydroxyflavone. Arab J Chem 4:147–152

    Article  CAS  Google Scholar 

  14. Compano R, Ferrer R, Guiteras J, Prat MD (1996) Flow injection method for the fluorimetric determination of Zn with 8-(benzenesulphonamido) quinoline. Microchim Acta 124:73–79

    Article  CAS  Google Scholar 

  15. Xu H, Miao R, Fang Z, Zhong XH (2011) Quantum dot-based “turn-on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal Chim Acta 687:82–88

    Article  CAS  Google Scholar 

  16. Shang Y, Qi L, Wu FY (2012) Functionalized manganese-doped zinc sulfide quantum dot-based fluorescent probe for zinc ion. Microchim Acta 177:333–339

    Article  CAS  Google Scholar 

  17. Pradhan N, Goorskey D, Goorskey J, Peng XG (2005) An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc 127:17586–17587

    Article  CAS  Google Scholar 

  18. Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74:520–526

    Article  Google Scholar 

  19. Chen JL, Chen CQ (2005) Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta 546:147–153

    Article  CAS  Google Scholar 

  20. Tang GC, Du LP, Su XG (2013) Detection of melamine based on the fluorescence resonance energy transfer between CdTe QDs and rhodamine B. Food Chem 141:4060–4065

    Article  CAS  Google Scholar 

  21. Liu SY, Shi FP, Chen L, Su XG (2013) Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2,4,6-trinitrophenol detection. Talanta 116:870–875

    Article  CAS  Google Scholar 

  22. Chen Z, Chen JY, Liang QW, Wu DD, Zeng Y, Jiang B (2014) ZnSe quantum dots basedfluorescence quenching method for determination of paeoniflorin. J Lumin 145:569–574

    Article  CAS  Google Scholar 

  23. Huang S, Zhu FW, Xiao Q, Su W, Sheng JR, Huang CS, Hu BQ (2014) A CdTe/CdS/ZnS core/shell/shell QDs-based “OFF-ON” fluorescent biosensor for sensitive and specific determination of L-ascorbic acid. RSC Adv 4:46751–46761

    Article  CAS  Google Scholar 

  24. Baker BA, Mahmoudabadi G, Milam VT (2013) Strand displacement in DNA-based materials systems. Soft Matter 9:11160–11172

    Article  CAS  Google Scholar 

  25. Furukawa K, Minakawa N (2014) Allosteric control of a DNA-hydrolyzing deoxyribozyme with short oligonucleotides and its application in DNA logic gates. Org Biomol Chem 12:3344–3348

    Article  CAS  Google Scholar 

  26. Uchiyama S, Kawai N, de Silva AP, Iwai K (2004) Fluorescent polymeric and logic gate with temperature and pH as inputs. J Am Chem Soc 126:3032–3033

    Article  CAS  Google Scholar 

  27. Liu J, Lin Q, Zhang YM, Wei TB (2014) A reversible and highly selective fluorescent probe for monitoring Hg2+ and iodide in aqueous solution. Sensors Actuators B 196:619–623

    Article  CAS  Google Scholar 

  28. Liu J, He XX, Zhang J, He T, Huang LQ, Shen JQ, Li D, Qiu HY, Yin SC (2015) A BODIPY derivative for colorimetric and fluorometric sensing of fluoride ion and its logic gates behavior. Sensors Actuators B 208:538–545

    Article  CAS  Google Scholar 

  29. Wang LL, Li B, Zhang LM, Li P, Jiang H (2013) An optical anion chemosensor based on a europium complex and its molecular logic behavior. Dyes Pigments 97:26–31

    Article  CAS  Google Scholar 

  30. Magri DC, de Silva AP (2010) From PASS 1 to YES to AND logic: building parallel processing into molecular logic gates by sequential addition of receptors. New J Chem 34:476–481

    Article  CAS  Google Scholar 

  31. Liu YF, Yu JS (2009) Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: the effect of ligands. J Colloid Interface Sci 333:690–698

    Article  CAS  Google Scholar 

  32. Yu WW, Qu LH, Gao WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  33. Zhang TL, Sun XG, Liu B (2011) Synthesis of positively charged CdTe quantum dots and detection for uric acid. Spectrochim Acta Part A 79:1566–1572

    Article  CAS  Google Scholar 

  34. Li L, Qian HF, Fang NH, Ren JC (2006) Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Lumin 116:59–66

    Article  CAS  Google Scholar 

  35. Lakowica JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York, p 237

    Book  Google Scholar 

  36. Liu Y, Loh WQ, Ananthanarayanan A, Yang C, Chen P, Xu CJ (2014) Fluorescence quenching between unbonded graphene quantum dots and gold nanoparticles upon simple mixing. RSC Adv 4:35673–35677

    Article  CAS  Google Scholar 

  37. Hu YJ, Yang YO, Dai CM, Liu Y, Xiao XH (2010) Site-selective binding of human serum albumin by palmatine: spectroscopic approach. Biomacromolecules 11:106–112

    Article  CAS  Google Scholar 

  38. Farahani BV, Bardajee GR, Rajabi FH, Hooshyar Z (2015) Study on the interaction of Co (III) DiAmsar with serum albumins: Spectroscopic and molecular docking methods. Spectrochim Acta Part A 135:410–416

    Article  CAS  Google Scholar 

  39. Zhang XH, Zhai HX, Gao RQ, Zhang JL, Zhang Y, Zheng XF (2014) Study on the interaction between 4-thio-5-methyluridine and human serum albumin by spectroscopy and molecular modeling. Spectrochim Acta Part A 121:724–731

    Article  CAS  Google Scholar 

  40. Habiby H, Afyuni M, Khoshgoftarmanesh AH, Schulin R (2014) Effect of preceding crops and their residues on availability of zinc in a calcareous Zn-deficient soil. Biol Fertil Soils 50:1061–1067

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Chongqing Municipal Key Laboratory on Luminescence and Real-Time Analysis, Southwest University (CSTC, 2006CA8006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youqiu He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 7834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, C., Liu, S., Liang, W. et al. A regenerable fluorescent quantum dot based nanoprobe for zinc(II), and the design of a molecular logic gate. Microchim Acta 182, 2009–2017 (2015). https://doi.org/10.1007/s00604-015-1543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1543-3

Keywords

Navigation