Skip to main content

Advertisement

Log in

Surface plasmon resonance sensor for norepinephrine using a monolayer of a calix[4]arene crown ether

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a calix[4]arene derivative for use as a recognition element in an SPR sensor for norepinephrine (NE). The calix[4]arene carries a crown ether and a thiol group that enables the formation a self-assembled monolayer (SAM) on a gold surface. NE is recognized by the calix[4]arene via its positively charged amino group that has a high affinity for the crown moiety of the calixarene. The modified gold surface was characterized by Fourier transform infrared reflection absorption spectroscopy, atomic force microscopy, and cyclic voltammetry. The binding process to the sensor surface was monitored by SPR. Under optimized condition, the sensor has a linear response to NE in the 10 pM to 100 nM concentration range, and the detection limit is 0.12 pM.

Schematic diagram of sensor chip configuration (left) and SPR angle increase according to treatment with different concentration of NE (right).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu AL, Zhang SB, Chen W, Lin XH, Xia XH (2008) Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode. Biosens Bioelectron 23:1488–1495

    Article  CAS  Google Scholar 

  2. Ma XY, Wang ZX, Wang XL, Xu LP (2013) Electrochemical determination of norepinephrine on the membrane of silver nanoparticles doped poly-glycine eliminating the interference of ascorbic acid. J Solid State Electr 17:661–665

    Article  CAS  Google Scholar 

  3. Zhang HL, Liu Y, Lai GS, Yu AM, Huang YM, Jin CM (2009) Calix[4]arene crown-4 ether modified glassy carbon electrode for electrochemical determination of norepinephrine. Analyst 134:2141–2146

    Article  CAS  Google Scholar 

  4. Yaghoubian H, Nejad VS, Roodsaz S (2010) Simultaneous voltammetric determination of norepinephrine, uric acid and folic acid at the surface of modified chloranil carbon nanotube paste electrode. Int J Electrochem Sci 5:1411–1421

    CAS  Google Scholar 

  5. Liu L, Xiao L, Zhu H, Shi X (2012) Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion. Microchim Acta 178:413–419

    Article  CAS  Google Scholar 

  6. Cotella EM, Lascano IM, Levin GM, Suarez MM (2009) Amitriptyline treatment under chronic stress conditions: effect on circulating catecholamines and anxiety in early maternally separated rats. Int J Neurosci 119:664–680

    Article  CAS  Google Scholar 

  7. Beitollahi H, Mohammadi S (2013) Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode. Mater Sci Eng C 33:3214–3219

    Article  CAS  Google Scholar 

  8. Manzoori JL, Amjadi M, Darvishnejad M (2012) Separation and preconcentration of trace quantities of copper ion using modified alumina nanoparticles, and its determination by flame atomic absorption spectrometry. Microchim Acta 176:437–443

    Article  CAS  Google Scholar 

  9. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemi-cal sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–4

    Article  CAS  Google Scholar 

  10. Hashem EY, Youssef AK (2013) Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants. J Appl Spectrosc 80:258–264

    Article  CAS  Google Scholar 

  11. Salmanpour S, Tavana T, Pahlavan A, Khalilzadeh MA, Ensafi AA, Maleh HK et al (2012) Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Mater Sci Eng C 32:1912–1918

    Article  CAS  Google Scholar 

  12. Farjami E, Campos R, Nielsen JS, Gothelf KV, Kjems J, Ferapontova EE (2013) RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine. Anal Chem 85:121–128

    Article  CAS  Google Scholar 

  13. Sorouraddin MH, Manzoori JL, Kargarzadeh E, Haji AM (1998) Spectrophotometric determination of some catecholamine drugs using sodium bismuthate. J Pharm Biomed Anal 18:877–881

    Article  CAS  Google Scholar 

  14. Zhu M, Huang XM, Li J, Shen HX (1997) Study on immobilized supramolecular inclusion complex of iron-porphyrin as an analoguefor peroxide proteinase. Anal Chim Acta 357:261–267

    Article  CAS  Google Scholar 

  15. Guan CL, Ouyang J, Li QL, Liu BH, Baeyens WR (2000) Simultaneous determination of catecholamines by ion chromatography with direct conductivity detection. Talanta 50:1197–1203

    Article  CAS  Google Scholar 

  16. Alam AM, Kamruzzaman M, Lee SH, Kim YH, Kim SY, Kim GM, Jo HJ, Kim SH (2012) Determination of catecholamines based on the measurement of the metal nanoparticle-enhanced fluorescence of their terbium complexes. Microchim Acta 176:153–161

    Article  CAS  Google Scholar 

  17. Doshi PS, David JE (1981) Effects of L-dopa on dopamine and norepinephrine concentrations in rat brain assessed by gas chromatography. J Chromatogr A 210:505–511

    Article  CAS  Google Scholar 

  18. Wei S, Song G, Lin JM (2005) Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J Chromatogr A 1098:166–171

    Article  CAS  Google Scholar 

  19. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J Chromatogr B 847:88–94

    Article  CAS  Google Scholar 

  20. Yoshitake T, Kehr J, Todoroki K, Nohta H, Yamaguchi M (2006) Derivatization chemistries for determination of serotonin, norepinephrine and dopamine in brain microdialysis samples by liquid chromatography with fluorescence detection. Biomed Chromatogr 20:267–281

    Article  CAS  Google Scholar 

  21. Ardakania MM, Beitollahi H, Amini MK, Mirkhalaf F, Mirjalili BF (2011) A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan. Biosens Bioelectron 26:2102–2106

    Article  Google Scholar 

  22. Mazloum-Ardakania M, Beitollahi H, Sheikh-Mohseni MA, Naeimi H, Taghavini N (2010) Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophene and folic acid. Appl Catal A Gen 378:195–201

    Article  Google Scholar 

  23. Wu Y, Feng X, Zhou S, Shi H, Wu H, Zhao S, Song W (2013) Sensing epinephrine with an ITO electrode modified with an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid. Microchim Acta 180:1325–1332

    Article  CAS  Google Scholar 

  24. Razavian AS, Ghoreishi SM, Esmaeily AS, Behpour M, Monzon LM, Coey JM (2014) Simultaneous sensing of L-tyrosine and epinephrine using a glassy carbon electrode modified with nafion and CeO2nanoparticles. Microchim Acta 181:1947–1955

    Article  CAS  Google Scholar 

  25. Chen H, Mei Q, Hou Y, Zhu X, Koh K, Li X et al (2013) Fabrication of a protease sensor for caspase-3 activity detection based on surface plasmon resonance. Analyst 138:5757–5761

    Article  CAS  Google Scholar 

  26. Hu WH, He GL, Chen T, Guo CX, Lu ZS, Selvaraj JN et al (2014) Graphene oxide-enabled tandem signal amplification for sensitive SPRi immunoassay in serum. Chem Commun 50:2133–2135

    Article  CAS  Google Scholar 

  27. Chen H, Hou Y, Ye Z, Wang H, Koh K, Shen Z et al (2014) Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid. Sens. Actuators, B: Chem 201:433–438

    Article  CAS  Google Scholar 

  28. Xue TY, Gui XQ, Guan WM, Wang QY, Liu C, Wang HT et al (2014) Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing. Biosens Bioelectron 58:374–379

    Article  CAS  Google Scholar 

  29. Bai YF, Feng F, Zhao L, Wang CY, Wang HY, Tian MZ et al (2013) Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surfaceplasmon resonance sensor for the detection ofsubnanomolar thrombin. Biosens Bioelectron 47:265–270

    Article  CAS  Google Scholar 

  30. Chen H, Mei QH, Hou YF, Koh K, Lee J, Chen B et al (2013) Building a sensitive immunosensing platform based on oriented immobilization of histidine-tagged antibody on NiO-decorated SWNTs. Sens. Actuators, B: Chem 181:38–43

    Article  CAS  Google Scholar 

  31. Henn C, Boettcher S, Steinbach A, Hartmann RW (2012) Catalytic enzyme activity on a biosensor chip: Combination of surface plasmon resonance and mass spectrometry. Anal Biochem 428:28–30

    Article  CAS  Google Scholar 

  32. Hu WH, He GL, Zhang HH, Wu XS, Li JL, Zhao ZL et al (2014) Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem 86:4488–4493

    Article  CAS  Google Scholar 

  33. Chen H, Hou Y, Qi F, Zhang J, Koh K, Shen Z et al (2014) Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosens Bioelectron 61:83–87

    Article  CAS  Google Scholar 

  34. Chen H, Kim YS, Lee J, Yoon SJ, Lim DS, Choi HJ et al (2007) Enhancement of BSA binding on Au surfaces by calix[4]bisazacrown monolayer. Sensors 7:2263–2272

    Article  CAS  Google Scholar 

  35. Chen H, Lee J, Jo WS, Jeong MH, Koh K (2011) Development of surface plasmon resonance immunosensor for the novel protein immunostimulating factor. Microchim Acta 172:171–176

    Article  CAS  Google Scholar 

  36. Chen H, Gu L, Yin Y, Koh K, Lee J (2011) Molecular recognition of arginine by supramolecular complexation with calixarene crown ether based on surface plasmon resonance. Int J Mol Sci 12:2315–2324

    Article  CAS  Google Scholar 

  37. Chen H, Kim YS, Keum SR, Kim SH, Choi HJ, Lee J et al (2007) Surface plasmon spectroscopic detection of saxitoxin. Sensors 7:1216–1223

    Article  CAS  Google Scholar 

  38. Lee M, Kang DK, Yang HK, Park KH, Choe SY, Kang C et al (2006) Protein nanoarray on Prolinker surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics 6:1094–1103

    Article  CAS  Google Scholar 

  39. Chen H, Huang J, Lee J, Hwang S, Koh K (2010) Surface plasmon resonance spectroscopic characterization of antibody orientation and activity on the calixarene monolayer. Sens. Actuators, B: Chem 147:548–553

    Article  CAS  Google Scholar 

  40. Chen H, Lee M, Choi S, Kim JH, Choi HJ, Kim SH et al (2007) Comparative study of protein immobilization properties on calixarene monolayers. Sensors 7:1091–1107

    Article  CAS  Google Scholar 

  41. Lee M, An WG, Kim JH, Choi HJ, Kim SH, Han MH et al (2004) A model study of artificial linker system using self-assembled calix[4]arene derivative monolayers for protein immobilization. Mater Sci Eng C 24:123–126

    Article  Google Scholar 

  42. Bard J, Faulkner LR (2001) Electrochemical methods: fundamentals and application. John Wiley & Sons, New York, USA, pp 239–243

    Google Scholar 

  43. Chen H, Lee M, Lee J, An WG, Choi HJ, Kim SH et al (2008) Building a novel vitronectin assay by immobilization of integrin on calixarene monolayer. Talanta 75:99–103

    CAS  Google Scholar 

  44. Lee J, Zhou H, Lee J (2011) Small molecule induced self-assembly of Au nanoparticles. J Mater Chem 21:16935–16942

    Article  CAS  Google Scholar 

  45. Lee J, Kim HY, Zhou H, Lee J (2011) Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem 21:13316–13326

    Article  CAS  Google Scholar 

  46. Seol H, Jeong H, Jeon S (2009) A selective determination of norepinephrine on the glassy carbon electrode modified with poly (ethylenedioxypyrrole dicarboxylic acid) nanofibers. J Solid State Electrochem 13:1881–1887

    Article  CAS  Google Scholar 

  47. Lin L, Yao H, Huang L, Lin X (2009) Electrocatalytic oxidation and determination of norepinephrine in the presence of ascorbic and uric acids at a poly (evans blue)—modified glassy carbon electrode. J Anal Chem 64:189–194

    Article  CAS  Google Scholar 

  48. Chen W, Lin X, Luo H, Huang L (2005) Electrocatalytic oxidation and determination of norepinephrine at poly(cresol red) modified glassy carbon electrode. Electroanal 17:941–945

    Article  CAS  Google Scholar 

  49. Kalimuthu P, John SA (2011) Selective determination of norepinephrine in the presence of ascorbic and uric acids using an ultrathin polymer film modified electrode. Electrochim Acta 56:2428–2432

    Article  CAS  Google Scholar 

  50. Karim MM, Alam SM, Lee SH (2007) Spectrofluorimetric estimation of norepinephrine using ethylenediamine condensation Method. J Fluresc 17:427–436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61275085, 31100560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keming Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jia, S., Gao, Y. et al. Surface plasmon resonance sensor for norepinephrine using a monolayer of a calix[4]arene crown ether. Microchim Acta 182, 1757–1763 (2015). https://doi.org/10.1007/s00604-015-1510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1510-z

Keywords

Navigation