Skip to main content
Log in

Amperometric biosensor for total monoamines using a glassy carbon paste electrode modified with human monoamine oxidase B and manganese dioxide particles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have prepared a biosensor for the determination of the total monoamine content in complex matrices by immobilizing a human monoamine oxidase B (hMAO B) on a glassy carbon paste electrode and adding manganese dioxide microparticles as the mediator. The enzyme hMAO B (expressed in Pichia pastoris and immobilized by using a dialysis membrane) catalyzes the oxidative deamination of monoamines, and this results in the formation of the corresponding aldehyde, ammonia and hydrogen peroxide. The latter was detected at pH 7.5 at a working voltage of 400 mV (vs. Ag/AgCl) by differential pulse voltammetry and amperometrically by applying flow injection analysis. Analytical parameters were established by using phenylethylamine (PEA) as a standard substrate. Peak height and concentration of PEA are linearly related in the 0.5 to 150 μg mL−1 concentration range, and the limits of detection and of quantification are 0.15 and 0.5 μg mL−1 of PEA, respectively. Substrate specificity was investigated with different monoamines including PEA, serotonin, benzylamine, dopamine, tyramine, and norepinephrine. The applicability of the biosensor was successfully tested in a commercial fish sauce that served as a complex matrix. The total monoamine content was calculated as PEA-equivalents.

A novel electrochemical human monoamine oxidase B modified biosensor for the quantification of monoamines was developed. It is based on a glassy carbon paste electrode with manganese dioxide as mediator. The biosensor was characterised and validated and its application was tested in complex matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carelli D, Centonze D, Palermo C, Quinto M, Rotunno T (2007) An interference free amperometric biosensor for the detection of biogenic amines in food products. Biogeosciences 23:640

    CAS  Google Scholar 

  2. Blasi G, Lo Bianco L, Taurisano P, Gelao B, Romano R, Fazio L, Papazacharias A, Di Giorgio A, Caforio G, Rampino A, Masellis R, Papp A, Ursini G, Sinibaldi L, Popolizio T, Sadee W, Bertolino A (2009) Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. J Neurosci 29:14812

    Article  CAS  Google Scholar 

  3. Mattay VS, Tessitore A, Callicott JH, Bertolini A, Goldberg TE, Chase TN, Hyde TM, Weinberger DR (2002) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 51:156

    Article  CAS  Google Scholar 

  4. Youdim M, Gross A, Finberg J (2001) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Brit J Pharmacol 132:500

    Article  CAS  Google Scholar 

  5. Youdim M, Edmondson D, Tipton K (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295

    Article  CAS  Google Scholar 

  6. Smythe G, Edwards G, Graham P, Lazarus L (1992) Biochemical diagnosis of pheochromocytoma by simultaneous measurement of urinary excretion of epinephrine and norepinephrine. Clin Chem 38:486

    CAS  Google Scholar 

  7. Plonk J, Feldman J (1975) Adrenal function in the carcinoid syndrome: effects of the serotonin antagonist cyproheptadine. Metabolism 24:1035

    Article  Google Scholar 

  8. Zhai H, Yang X, Li L, Xia G, Cen J, Huang H, Hao S (2012) Biogenic amines in commercial fish and fish products sold in southern china. Food Control 25:303

    Article  CAS  Google Scholar 

  9. Jia S, Kang YP, Park JH, Lee J, Kwon SW (2011) Simultaneous determination of 23 amino acids and 7 biogenic amines in fermented food samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1218:9174

    Article  CAS  Google Scholar 

  10. Simo C, Moreno-Arribas MV, Cifuentes A (2008) Ion-trap versus time-of-flight mass spectrometry coupled to capillary electrophoresis to analyze biogenic amines in wine. J Chromatogr A 150:1195

    Google Scholar 

  11. Ali Awan M, Fleet I, Thomas CP (2008) Determination of biogenic diamines with a vaporisation derivatisation approach using solid-phase microextraction gas chromatography–mass spectrometry. Food Chem 111:462

    Article  CAS  Google Scholar 

  12. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2014) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta. doi:10.1007/s00604-014-1308-4

  13. Calvo-Perez A, Dominguez-Renedo O, Alonso-Lomillo MA, Arcos-Martinez MJ (2013) Disposable amperometric biosensor for determination of tyramine using plasma amino oxidase. Microchim Acta 180:253

    Article  CAS  Google Scholar 

  14. Alonso-Lomillo MA, Dominguez-Renedo O, Matos P, Arcos-Martinez MJ (2010) Disposable biosensors for determination of biogenic amines. Anal Chim Acta 665:26

    Article  CAS  Google Scholar 

  15. Joshi P, Joshi HC, Sanghi SK, Kundu S (2010) Immobilization of monoamine oxidase on eggshell membrane and its application in designing an amperometric biosensor for dopamine. Microchim Acta 169:383

    Article  CAS  Google Scholar 

  16. de Jesus DS, Couto CMCC, Araujo AN, Montenegro MCBSN (2003) Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol–gel film for benzydamine determination in pharmaceuticals. J Pharm Biomed 33:983

    Article  Google Scholar 

  17. Kivirand K, Rinken T (2009) Preparation and characterization of cadaverine sensitive nylon threads. Sens Lett 7:580

    Article  CAS  Google Scholar 

  18. Draisci R, Volpe G, Lucentini L, Cecilia A, Federico R, Palleschi G (1997) Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem 62:225

    Article  Google Scholar 

  19. Tombelli S, Mascini M (1998) Electrochemical biosensors for biogenic amines: a comparison between different approaches. Anal Chim Acta 358:277

    Article  CAS  Google Scholar 

  20. Male KB, Bouvrette P, Luong JHT, Gibbs BF (1996) Amperometric biosensor for total histamine, putrescine and cadaverine using diamine oxidase. J Food Sci 61:1012

    Article  CAS  Google Scholar 

  21. Esti M, Volpe G, Massignan L, Compagnone D, La Notte E, Palleschi G (1998) Determination of amines in fresh and modified atmosphere packaged fruits using electrochemical biosensors. J Agric Food Chem 46:4233

    Article  CAS  Google Scholar 

  22. Telsnig D, Terzic A, Krenn T, Kassarnig V, Kalcher K, Ortner A (2012) Development of a voltammetric amine oxidase modified biosensor for the determination of biogenic amines in food. Int J Electrochem Sci 7:6893

    CAS  Google Scholar 

  23. Wimmerova M, Macholan L (1999) Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. Biosens Bioelectron 14:695

    Article  CAS  Google Scholar 

  24. Telsnig D, Kassarnig V, Zapf C, Leitinger G, Kalcher K, Ortner A (2012) Characterization of an amperometric biosensor for the determination of biogenic amines in flow injection analysis. Int J Electrochem Sci 7:10476

    CAS  Google Scholar 

  25. Telsnig D, Kalcher K, Leitner A, Ortner A (2013) Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes. Electroanalysis 25:47

    Article  CAS  Google Scholar 

  26. Newton-Vinson P, Hubalek F, Edmondson D (2000) High-level expression of human liver monoamine oxidase B in Pichia pastoris. Prot Expres Purif 24:334

    Article  Google Scholar 

  27. Schachl K, Alemu H, Kalcher K, Jezkova J, Svancara I, Vytras K (1997) Flow injection determination of hydrogen peroxide using a carbon paste electrode modified with a manganese dioxide film. Anal Lett 30:2655

    Article  CAS  Google Scholar 

  28. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848

    Article  CAS  Google Scholar 

  29. Hu K, Zhang L, Li X, Zhao S (2010) Rapid screening of monoamine oxidase B inhibitors in natural extracts by capillary electrophoresis after enzymatic reaction at capillary inlet. J Chromatogr B 878:3156

    Article  CAS  Google Scholar 

  30. Self RL, Wu WH (2012) Determination of eight biogenic amines in selected seafood products by MSPD extraction followed by UHPLC-Orbitrap MS. J Food Comp Anal 27:169

    Article  CAS  Google Scholar 

  31. Schroeder U, Manthey-Karl M, Lehmann I, Meyer C (2011) Stabilitaetsstudie von asiatischen Fischsoßen auf dem deutschen Markt. Fleischwirtschaft 6:95

    Google Scholar 

  32. Kirschbaum J, Rebscher K, Brueckner H (2000) Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3,5-dinitrobenzoyl chloride. J Chromatogr A 881:517

    Article  CAS  Google Scholar 

  33. An D, Chen Z, Zheng J, Chen S, Wang L, Huang Z, Weng L (2015) Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem 168:1

    Article  CAS  Google Scholar 

  34. Wang YQ, Ye DQ, Zhu BQ, Wu GF, Duan CQ (2014) Rapid HPLC analysis of amino acids and biogenic amines in wines during fermentation and evaluation of matrix effect. Food Chem 163:6

    Article  CAS  Google Scholar 

  35. Piasta AM, Jastrzebska A, Krzeminski MP, Muziol TM, Szlyk E (2014) New procedure of selected biogenic amines determination in wine samples by HPLC. Anal Chim Acta 834:58

    Article  CAS  Google Scholar 

  36. Ordonez JL, Callejon, Morales ML, Garcia-Parrilla MC (2013) A survey of biogenic amines in vinegars. Food Chem 141:2713

    Article  CAS  Google Scholar 

  37. Lee JI, Kim YW (2013) Characterization of amine oxidases from Arthrobacter aurescens and application for determination of biogenic amines. World J Microbiol Biotechnol 29:673

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Milagros Aldeco for her contribution regarding the production and for providing hMAO B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Ortner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aigner, M., Telsnig, D., Kalcher, K. et al. Amperometric biosensor for total monoamines using a glassy carbon paste electrode modified with human monoamine oxidase B and manganese dioxide particles. Microchim Acta 182, 925–931 (2015). https://doi.org/10.1007/s00604-014-1404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1404-5

Keywords

Navigation