Skip to main content
Log in

Effects of type of nanosized carbon black on the performance of an all-solid-state potentiometric electrode for nitrate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The potentiometric properties of all-solid-state nitrate-selective electrodes based on plasticized PVC and containing different types of nanosized carbon black were investigated. The use of a carbon black interlayer is shown to significantly improve the potentiometric response. The electrodes display a close-to-Nernstian slope in the range from 10−1 to 10−6 M, highly stable potentials and low membrane resistance. However, different analytical features were found depending on the type of carbon black used. The best long-term potential stability was observed for the electrode with Printex XE2-B carbon black that has a relatively high BET surface area (1000 m2 · g−1) and an average particle size of 30 nm. Nevertheless, the electrodes with the Vulcan XC-72 (BET surface: 240 m2 · g−1; average size: 55 nm) showed the most repeatable and reproducible standard potential. The lowest detection limit for nitrate (2.5·10−7 M) is observed for an electrode containing Vulcan XC-72.

The comparison of the potentiometric behavior of all-solid state ion-selective electrodes with the different types of the furnace carbon black is presented by employing the nitrate-selective membrane. The electrodes display a close-to-Nernstian slope, highly stable potentials and low membrane resistance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108:329–351. doi:10.1021/cr068100w

    Article  CAS  Google Scholar 

  2. Cattrall R, Freiser H (1971) Coated wire ion-selective electrodes. Anal Chem 43:1905–1906. doi:10.1021/ac60307a032

    Article  CAS  Google Scholar 

  3. Bobacka J (2006) Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18:7–18. doi:10.1002/elan.200503384

    Article  CAS  Google Scholar 

  4. Wardak C, Lenik J (2013) Application of ionic liquid to the construction of Cu(II) ion-selective electrode with solid contact. Sensors Actuators B 189:52–59. doi:10.1016/j.snb.2012.12.065

  5. Paczosa-Bator B, Cabaj L, Piech R, Skupień K (2012) Platinum nanoparticles intermediate layer in solid-state selective electrodes. Analyst 137:5272–5277. doi:10.1039/c2an35933b

    Article  CAS  Google Scholar 

  6. Paczosa-Bator B, Cabaj L, Piech R, Skupień K (2013) Potentiometric sensors with carbon black supporting platinum nanoparticles. Anal Chem 85:10255–10261. doi:10.1021/ac402885y

    Google Scholar 

  7. Fouskaki M, Chaniotakis N (2008) Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst 133:1072–1075. doi:10.1039/b719759d

    Article  CAS  Google Scholar 

  8. Lai C, Fierke MA, Stein A, Bühlmann P (2007) Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal Chem 79:4621–4626. doi:10.1021/ac070132b

    Article  CAS  Google Scholar 

  9. Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316–1322. doi:10.1021/ac071156l

    Article  CAS  Google Scholar 

  10. Zhu J, Qin Y, Zhang Y (2009) Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites. Electrochem Commun 11:1684–1687. doi:10.1016/j.elecom.2009.06.025

    Article  CAS  Google Scholar 

  11. Li F, Ye J, Zhou M, Gan S, Zhang Q, Han D, Niu L (2012) All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst 137:618–623. doi:10.1039/c1an15705a

    Article  CAS  Google Scholar 

  12. Paczosa-Bator B (2012) All-solid-state selective electrodes using carbon black. Talanta 93:424–427. doi:10.1016/j.talanta.2012.02.013

    Article  CAS  Google Scholar 

  13. Paczosa-Bator B, Piech R, Cabaj L (2012) The influence of an intermediate layer on the composition stability of a polymeric ion-selective membrane. Electrochim Acta 85:104–109. doi:10.1016/j.electacta.2012.08.051

    Article  CAS  Google Scholar 

  14. Ivanova NM, Podeshvo IV, Goikhman MY, Yakimanskii AV, Mikhelson KN (2013) Potassium-selective solid contact electrodes with poly(amidoacid) Cu(I) complex, electron-ion exchanging resin and different sorts of carbon black in the transducer layer. Sensors Actuators B 186:589–596. doi:10.1016/j.snb.2013.06.072

    Article  CAS  Google Scholar 

  15. Degussa/Evonik, Germany - Pigmentrusse/pigment blacks, Technische Daten Europa/Technical Data Europe, Degussa AG, Advanced fillers & pigments (2006)

  16. Williams M, Khotseng L, Naidoo Q, Petrik L, Nechaev A, Linkov V (2009) Applicability of analytical protocols for the characterisation of carbon-supported platinum group metal fuel cell electrocatalysts. S Afr J Sci 105:285–289

    CAS  Google Scholar 

  17. Tang W, Ping J, Fan K, Wang Y, Luo X, Ying Y, Wu J, Zhou Q (2012) All-solid-state nitrate-selective electrode and its application in drinking water. Electrochim Acta 81:186–190. doi:10.1016/j.electacta.2012.07.073

    Article  CAS  Google Scholar 

  18. Bakker E, Pretsch E, Bühlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72:1127–1133. doi:10.1021/ac991146n

    Article  CAS  Google Scholar 

  19. Fibbioli M, Morf WE, Badertscher M, De Rooij NF, Pretsch E (2000) Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12:1286–1292. doi:10.1002/1521-4109(200011)12:16<1286::AID-ELAN1286>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  20. Bobacka J (1999) Potential stability of all-solid-state Ion-selective electrodes using conducting polymers as Ion-to-electron transducers. Anal Chem 71:4932–4937. doi:10.1021/ac990497z

    Article  CAS  Google Scholar 

  21. Mousavi Z, Bobacka J, Lewenstam A, Ivaska A (2009) Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes J. Electroanal Chem 633:246–252. doi:10.1016/j.jelechem.2009.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author is grateful to K. Skupień (3D-nano Co.) for stimulating discussion. This work was supported by NCBiR (No. LIDER/31/7/L-2/10/NCBiR/2011). W. Osiewala is acknowledged for improving the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Paczosa-Bator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paczosa-Bator, B. Effects of type of nanosized carbon black on the performance of an all-solid-state potentiometric electrode for nitrate. Microchim Acta 181, 1093–1099 (2014). https://doi.org/10.1007/s00604-014-1216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1216-7

Keywords

Navigation