Skip to main content
Log in

Colorimetric and bare-eye detection of alkaline earth metal ions based on the aggregation of silver nanoparticles functionalized with thioglycolic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a simple and rapid method for colorimetric and bare-eye detection of the alkaline earth metal ions Mg(II), Ca(II), Sr(II) and Ba(II) based on the use of silver nanoparticles (AgNPs) functionalized with thioglycolic acid (TGA). The TGA ligand was self-assembled onto the AgNPs to form a probe that undergoes a color change from yellow to orange or red on exposure to the alkaline earth ions. It is presumed that the color change is a result of the aggregation of the AgNPs caused by the interaction of the bivalent ions with the carboxy groups on the AgNPs. The color change can be used for bare-eye and colorimetric determination of the alkaline earth metal ions, for example to rapidly determine water hardness.

We have developed an efficient colorimetric method for alkaline earth metal ions using silver nanoparticles functionalized with thioglycolic acid as probe. This probe selectively recognizes alkaline earth metal ions through a distinct visual color change from yellow to red.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elghanian R, Storhoff J, Mucic R, Letsingerand R, Mirkin C (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  2. Lin C, Yu C, Lin Y, Tseng W (2010) Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem 82:6830–6837

    Article  CAS  Google Scholar 

  3. Yang W, Gooding JJ, He Z, Li Q, Chen G (2007) Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. J Nanosci Nanotechnol 7:712–716

    CAS  Google Scholar 

  4. Aili D, Enander K, Rydberg J, Nesterenko I, Bjorefors F, Baltzer L, Liedberg B (2008) Folding induced assembly of polypeptide decorated gold nanoparticles. J Am Chem Soc 130:5780–5788

    Article  CAS  Google Scholar 

  5. Xu D, Zhao H, Huang C, Wu L, Pu W, Zheng J, Zuo Y (2012) Sensitive and selective detection of mercury (II) based on the aggregation of gold nanoparticles stabilized by riboflavin. J Nanosci Nanotechnol 12:3006–3010

    Article  CAS  Google Scholar 

  6. Kanayama N, Takarada T, Maeda M (2011) Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles. Chem Commun 47:2077–2079

    Article  CAS  Google Scholar 

  7. Wu X, Xu Y, Dong Y, Jiang X, Zhu N (2013) Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles. Anal Methods 5:560–565

    Article  CAS  Google Scholar 

  8. Xu Y, Dong Y, Jiang X, Zhu N (2013) Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe. J Nanosci Nanotechnol 13:6820–6825

    Article  Google Scholar 

  9. Wei H, Li B, Li J, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 36:3735–3737

    Article  Google Scholar 

  10. Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X (2011) Silver nanoprobe for sensitive and selective colorimetric detection of dopaminevia robust Ag–catechol interaction. Chem Commun 47:1181–1183

    Article  CAS  Google Scholar 

  11. Saris NL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta 294:1–26

    Article  CAS  Google Scholar 

  12. Sugiyama M, Matsui M, Nakayama E (1984) Direct determination of barium in sea water by inductively coupled plasma emission spectrometry. J Oceanogr Soc Jpn 40:295–302

    Article  CAS  Google Scholar 

  13. Zanjanchi MA, Arvand M, Mahmoodi NO, Islamnezhad A (2009) A fast response strontium ion-selective electrode prepared by sol–gel membrane technique. Electroanal 21:1816–1821

    Article  CAS  Google Scholar 

  14. Waterworth JP, Skinner LR (1998) Use of ion chromatography as an alternative method for the analysis of calcium in calcium mupirocin. J Chromatogr A 804(1):211–215

    Article  CAS  Google Scholar 

  15. Shakulashvili N, Faller T, Engelhardt H (2000) Simultaneous determination of alkali, alkaline earth and transition metal ions by capillary electrophoresis with indirect UV detection. J Chromatogr A 895:205–212

    Article  CAS  Google Scholar 

  16. Zhang J, Wang Y, Xu X, Yang X (2011) Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water. Analyst 136:3865–3868

    Article  CAS  Google Scholar 

  17. Ajayaghosh A, Arunkumar E, Daub J (2002) A highly specific Ca2+-ion sensor: signaling by exciton interaction in a rigid–flexible–rigid bichromophoric “H” foldamer. Angew Chem Int Ed 41:1766–1769

    Article  CAS  Google Scholar 

  18. Arunkumar E, Chithra E, Ajayaghosh A (2004) A controlled supramolecular approach toward cation-specific chemosensors: alkaline earth metal Ion-driven exciton signaling in squaraine tethered podands. J Am Chem Soc 126:6590–6598

    Article  CAS  Google Scholar 

  19. Yagi S, Nakamura S, Watanabe D, Nakazumi H (2009) Colorimetric sensing of metal ions by bis(spiropyran) podands: towards naked-eye detection of alkaline earth metal ions. Dyes Pigments 80:98–105

    Article  CAS  Google Scholar 

  20. Reynolds AJ, Haines AH, Russell DA (2006) Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Langmuir 22:1156–1163

    Article  CAS  Google Scholar 

  21. Kim S, Park JW, Kim D, Kim D, Lee IH, Jon S (2009) Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew Chem 121:4202–4205

    Article  Google Scholar 

  22. Li H, Cui Z, Han C (2009) Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sensors Actuators B Chem 143:87–92

    Article  Google Scholar 

  23. Li H, Li F, Han C, Cui Z, Xie G, Zhang A (2010) Highly sensitive and selective tryptophan colorimetric sensor based on 4,4-bipyridine-functionalized silver nanoparticles. Sensors Actuators B Chem 145:194–199

    Article  CAS  Google Scholar 

  24. Su YH, Chang SH, Teoh LG, Chu WH, Tu SL (2009) Plasmons: chemical bonding coupling induced surface plasmon resonance splitting in self-assembled gold nanoparticles. J Phys Chem C 113:3923–3928

    Article  CAS  Google Scholar 

  25. Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    Article  CAS  Google Scholar 

  26. Patungwas W, Hodak Jose H (2008) pH tunable morphology of the gold nanoparticles produced by citrate reduction. Mater Chem Phys 108:45–54

    Article  Google Scholar 

  27. Guan J, Jiang L, Zhao L, Li J, Yang W (2008) pH-dependent response of citrate capped Au nanoparticle to Pb2+ ion. Colloids Surf A 325:194–197

    Article  CAS  Google Scholar 

  28. Jiang L, Guan J, Zhao L, Li J, Yang W (2009) pH-dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: The competition effect of hydroxyl groups with the carboxyl groups. Colloids Surf A 346:216–220

    Article  CAS  Google Scholar 

  29. Dean JA (1999) Lange’s handbook of chemistry fifteenth ed. McGraw-Hill Book Co, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the program of the Food Safety and Nutrition Innovation Team of Shanghai Normal University (DXL123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Tang, W., Hou, C. et al. Colorimetric and bare-eye detection of alkaline earth metal ions based on the aggregation of silver nanoparticles functionalized with thioglycolic acid. Microchim Acta 181, 991–998 (2014). https://doi.org/10.1007/s00604-014-1185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1185-x

Keywords

Navigation