Skip to main content
Log in

Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a protocol for a simultaneous competitive immunoassay for tetracycline (TC) and chloramphenicol (CAP) on the same sensing interface. Conjugates of TC and of CAP with bovine serum albumin were first co-immobilized on a glassy carbon electrode modified with gold nanoparticles. In parallel, monoclonal anti-TC and anti-CAP antibodies were conjugated onto CdS and PbS nanoclusters, respectively. In a typical assay, the immobilized haptens and the added target analytes competed for binding to the corresponding antibodies on the nanoclusters. Subsequently, Cd(II) and Pb(II) ions are released from the surface of the corresponding nanoclusters by treatment with acid and then were detected by square wave anodic stripping voltammetry. The currents at the peak potentials for Cd(II) and Pb(II) were used as the sensor signal for TC and CAP, respectively. This multiplex immunoassay enables the simultaneous determination of TC and CAP in a single run with dynamic ranges from 0.01 to 50 ng mL−1 for both analytes. The detection limits for TC and for CAP are 7.5 pg mL−1 and 5.4 pg mL−1, respectively. No obvious nonspecific adsorption and cross-reactivity was observed in a series of analyses. Intra-assay and inter-assay coefficients of variation were less than 10 %. The method was evaluated by analyzing TC and CAP in spiked samples of milk and honey. The recoveries range from 88 % to 107 % for TC, and from 91 % to 119 % for CAP.

We developed a new multiplexed electrochemical immunoassay for simultaneous determination of tetracycline and chloramphenicol, using metal sulfide nanoclusters as recognition elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Giovannoli C, Anfossi L, Biagioli F, Passini C, Baffiani C (2013) Solid phase extraction of penicillins from milk by using sacrificical silica beads as a support for a molecular imprint. Microchim Acta. doi:10.1007/s00604-013-0980-0

    Google Scholar 

  2. Zaidi S (2013) Recent advancement in various electrochemical and immunosensing strategies for detection of chloramphenicol. Int J Electrochem Sci 8:9936

    CAS  Google Scholar 

  3. Tan H, Ma C, Song Y, Xu F, Chen S, Wang L (2013) Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens Bioelectron 50:447

    Article  CAS  Google Scholar 

  4. Fallah A, Saei-Dehkordi S, Mahzounieh M (2013) Occurrence and antibiotic resistance profiles of Listeria monocytogenes isolated from seafood products and market and processing environments in Iran. Food Control 34:630

    Article  Google Scholar 

  5. Mohan R, Mukherjee A, Sevgen S, Sanpitakseree C, Lee J, Schroeder C, Kenis P (2013) Biosens Bioelectron 49:118

    Article  CAS  Google Scholar 

  6. Ho T, Chan C, Chan K, Wang Y, Lin J, Chang C, Chen C (2013) Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of gentamycin. Biosens Bioelectron 49:126

    Article  CAS  Google Scholar 

  7. Zhang B, Tang D, Goryacheva I, Niessner R, Knopp D (2013) Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres. Chem Eur J 19:2496

    Article  CAS  Google Scholar 

  8. Wang Y, Yan Y, Mao Z, Wang H, Zou Q, Hao Q, Ji W, Sun J (2013) Highly sensitive electrochemical immunoassay for zearalenone in grain and grain-based food. Microchim Acta 180:187

    Article  CAS  Google Scholar 

  9. Lai W, Zhuang J, Tang J, Chen G, Tang D (2012) One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim Acta 178:357

    Article  CAS  Google Scholar 

  10. Wang G, Qing Y, Shan J, Jin F, Yuan R, Wang D (2013) Cation-exchange antibody labeling for simultaneous electrochemical detection of tumor markers CA 15–3 and CA 19–9. Microchim Acta 180:651

    Article  CAS  Google Scholar 

  11. Tang J, Tang D, Niessner R, Chen G, Knopp D (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83:5407

    Article  CAS  Google Scholar 

  12. Tang D, Tang J, Su B, Chen H, Huang J, Chen G (2010) Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles. Microchim Acta 171:457

    Article  CAS  Google Scholar 

  13. Chen X, Jia X, Han J, Ma J, Ma Z (2013) Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens Bioelectron 50:356

    Article  CAS  Google Scholar 

  14. Zhang B, Liu B, Zhou J, Tang J, Tang D (2013) Additional molecular biological amplification strategy for enhanced sensitivity of monitoring low-abundance protein with dual nanotags. ACS Appl Mater Interface 5:4479

    CAS  Google Scholar 

  15. Gao H, Zhong J, Qin P, Lin C, Sun W, Jiao K (2009) Electrochemical DNA hybridization assay for the FMV 35 S gene sequence using PbS nanoparticles as a lable. Microchim Acta 165:173

    Article  CAS  Google Scholar 

  16. Tang D, Hou L, Niessner R, Xu M, Gao Z, Knopp D (2013) Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads. Biosens Bioelectron 46:37

    Article  CAS  Google Scholar 

  17. Kalanur S, Chae S, Joo O (2013) Transparent Cu 1.8 s and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochim Acta 103:91

    Article  CAS  Google Scholar 

  18. Tian J, Zhao H, Zhao H, Quan X (2012) Photoelectrochemical immunoassay for microcystin-LR based on a fluorine-doped tin oxide glass electrode modified with a CdS-graphene composite. Microchim Acta 179:163

    Article  CAS  Google Scholar 

  19. Sheng Z, Hu D, Zhang P, Gong P, Gao D, Liu S, Cai L (2012) Cation exhance in aptamer-conjugated CdSe nanoclusters: a novel fluorescence signal amplification for cancer cell detection. Chem Commun 48:4202

    Article  CAS  Google Scholar 

  20. Tang D, Yuan R, Chai Y (2006) Electron-transfer mediator microbiosensor fabrication based on immobilizing HRP-labeled Au colloids on gold electrode surface by 11-mercaptoundecanoic acid monolayer. Electroanalysis 18:259

    Article  CAS  Google Scholar 

  21. Tang D, Yuan R, Chai Y (2008) In situ amplified electrochemical immunoassay for cancinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. Anal Chem 80:1582

    Article  CAS  Google Scholar 

  22. Fan K, Luo X, Ping J, Tang W, Wu J, Ying Y, Zhou Q (2012) Sensitive determination of epigallocatechin gallate in tea infusion using a novel ionic liquid carbon paste. J Agric Food Chem 60:6333

    Article  CAS  Google Scholar 

  23. Pilehvar S, Mehta J, Dardenne F, Robbens J, Blust R, De Wael K (2012) Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit. Anal Chem 84:6753

    Article  CAS  Google Scholar 

  24. Zhang N, Xiao F, Bai J, Lai Y, Hou J, Xian Y, Jin L (2011) Label-free immunoassay for chloramphenicol based on hollow gold nanosphere/chitosan composite. Talanta 87:100

    Article  CAS  Google Scholar 

  25. Song W, Pasco N, Gooneratne R, Weld R (2012) Comparison of three genetically modified Escherichia coli biosensor strains for amperometric tetracycline measurement. Biosens Bioelectron 35:69

    Article  CAS  Google Scholar 

  26. Guo Z, Gai P (2011) Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Anal Chim Acta 688:197

    Article  CAS  Google Scholar 

  27. Que X, Chen X, Fu L, Lai W, Zhuang J, Chen G, Tang D (2013) Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues. J Electrochem Chem 704:111

    CAS  Google Scholar 

  28. Douny C, Widart J, de Pauw E, Maghuin-Rogister G, Scippo M (2013) Determination of chloramphenicol in honey, shrimp, and poultry meat with liquid chromatography-mass spectroscopy: validation of the method according to commission decision 2002/657/EC. Food Anal Method 6:1458

    Article  Google Scholar 

  29. Conzuelo F, Campuzano S, Gamella M, Pinacho D, Reviejo A, Marco M, Pingarron J (2013) Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamine and tetracycline antibiotics residues in milk. Biosens Bioelectron 50:100

    Article  CAS  Google Scholar 

  30. Tan H, Ma C, Song Y, Xu F, Chen S, Wang L (2013) Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens Bioelectronc 50:447

    Article  CAS  Google Scholar 

  31. Liu B, Zhang B, Cui Y, Chen H, Gao Z, Tang D (2011) Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Appl Mater Interfaces 3:4668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National “973” Basic Research Program of China (2010CB732403), the National Natural Science Foundation of China (21075019, 41176079), the Research Fund for the Doctoral Program of Higher Education of China (20103514120003), the National Science Foundation of Fujian Province (2011 J06003), the China-Russia Bilateral Scientific Cooperation Research Program (NSFC/RFBR) (21211120157), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianping Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Zhang, B., Chen, G. et al. Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Microchim Acta 181, 257–262 (2014). https://doi.org/10.1007/s00604-013-1096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1096-2

Keywords

Navigation