Skip to main content
Log in

Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new sandwich-type electrochemical immunoassay was developed for the detection of human IgG using doubly-encoded and magnetic redox-active nanoparticles as recognition elements on the surface of a glassy carbon electrode modified with anti-IgG on nanogold particles. The recognition elements were synthesized by coating magnetic Fe3O4 nanoparticles with Prussian blue nanoparticles and then covered with peroxidase-labeled anti-IgG antibodies (POx-anti-IgG) on Prussian blue nanoparticles. The immunoelectrode displays very good electrochemical properties towards detection of IgG via using double-encoded magnetic redox-active nanoparticles as trace and hydrogen peroxide as enzyme substrate. Its limit of detection (10 pmol·L−1) is 10-fold better than that of using plain POx-anti-IgG secondary antibodies. The method was applied to the detection of IgG in serum samples, and an excellent correspondence with the reference values was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Huang K, Sun J, Xu C, Niu D, Xie W (2010) A disposable immunosensor based on gold colloid modified chitosan nanoparticles-entrapped carbon paste electrode. Microchim Acta 168:51

    Article  CAS  Google Scholar 

  2. Guedri H, Durrieu C (2008) A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Microchim Acta 163:179

    Article  CAS  Google Scholar 

  3. Zhang J, Wang J, Zhu J, Xu J, Chen H, Xu D (2008) An electrochemical impedimetric arrayed immunosensor based on indium tin oxide electrodes and silver–enhanced gold nanoparticles. Microchim Acta 163:63

    Article  CAS  Google Scholar 

  4. Wang L, Gan X (2009) Antibody-functionalized magnetic nanoparticles for electrochemical immunoassay of α-1-fetoprotein in human serum. Microchim Acta 164:231–237

    Article  CAS  Google Scholar 

  5. Tang D, Ren J (2008) In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. Anal Chem 80:8065

    Google Scholar 

  6. Zacco E, Adrian J, Galve R, Marco MP, Alegret S, Pividori MI (2007) Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens Bioelectron 22:2184

    Article  CAS  Google Scholar 

  7. Kiel M, Bohlen O, Sauer D (2008) Harmonic analysis for identification of nonlinearities in impedance spectroscopy. Electrochim Acta 53:7367

    Article  CAS  Google Scholar 

  8. Dietmar D, Tang D, Niessner R (2009) Review: bioanalytical applications of biomolecules-functionalized nanometer-size doped silica particles. Anal Chim Acta 647:14

    Article  Google Scholar 

  9. Tang D, Yuan R, Chai Y, Dai J, Zhong X, Liu Y (2004) A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy. Bioeletrochemistry 65:15

    Article  CAS  Google Scholar 

  10. Bart M, Stigter E, Stapert H, de Jong G, van Bennekom WP (2005) On the response of a label-free interferon-gamma immunosensor utilizing electrochemical impedance spectroscopy. Biosens Bioelectron 21:49

    Article  CAS  Google Scholar 

  11. La Belle J, Bhavsar K, Fairchild A, Das A, Sweeney J, Alford T, Wang J, Bhavanandan V, Joshi L (2007) Cytokine immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens Bioelectron 23:428

    Article  Google Scholar 

  12. Li X, Yang X, Zhang S (2008) Electrochemical enzyme immunoassay using model labels. Trend Anal Chem 27:543

    Article  Google Scholar 

  13. Mani V, Chikkaveeraiah B, Patel V, Gutkind J, Rusling J (2009) Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticles film electrode and multienzyme-particle amplification. ACS Nano 3:585

    Article  CAS  Google Scholar 

  14. Zhong Z, Li M, Xiang D, Dai N, Qing Y, Wang D, Tang D (2009) Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels. Biosens Bioelectron 24:2246

    Article  CAS  Google Scholar 

  15. Piao Y, Lee D, Lee J, Hyeon T, Kim J, Kim H (2009) Multiplexed immunoassay using the stabilized enzymes in mesoporous silica. Biosens Bioelectron 25:906

    Article  CAS  Google Scholar 

  16. Tang D, Ren J (2008) In situ amplified electrochemical immunoassay for carcinoembryoninc antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. Anal Chem 80:8064

    Article  CAS  Google Scholar 

  17. Tang D, Yuan R, Chai Y (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem 80:1582

    Article  CAS  Google Scholar 

  18. Yang M, Li H, Javadi A, Gong S (2010) Multifunctional mesoporous silica nanoparticles as labels for the preparation of ultrasensitive electrochemical immunosensor. Biomaterials 12:3281

    Article  Google Scholar 

  19. Menshykau D, O’Mahony A, Campo F, Munoz F, Compton G (2009) Microarrays of ring-recessed disk electrode in transient generator collector mode: theory and experiment. Anal Chem 81:9372

    Article  CAS  Google Scholar 

  20. Zabet-Khosousi A, Dhirani A (2008) Charge transport in nanoparticle assemblies. Chem Rev 108:4072

    Article  CAS  Google Scholar 

  21. Rosi N, Mirkin C (2005) Nanostructures in biodiagnositics. Chem Rev 105:1547

    Article  CAS  Google Scholar 

  22. Tsukatani T, Fujihara H (2005) New method for facile syntheis of amphiphilic thiol-stabilized ruthenium nanoparticles and their redox active ruthenium nanocomposite. Langmuir 21:12093

    Article  CAS  Google Scholar 

  23. Budny A, Novak F, Plumere N, Schtter B, Speiser B, Straub D, Mayer H, Reginek M (2006) Redox-active silica nanoparticles, Part 1, Electrochemistry and catalytic activity of spherical, nonporous silica particles with nanometric diameters and covalently bound redox-active modifications. Langmuir 22:10605

    Article  CAS  Google Scholar 

  24. Suh M, Moon H, Lee E, Jang S (2006) A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. J Am Chem Soc 128:4710

    Article  CAS  Google Scholar 

  25. Kang Y, Risbud S, Rabolt J, Stroever P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3. Chem Mater 8:2209

    Article  CAS  Google Scholar 

  26. El-Deab M, Arihara K, Ohsaka T (2004) Fabrication of Au(111)-like polycrystalline gold electrodes and their application to oxygen reduction. J Electrochem Soc 151:E213

    Article  CAS  Google Scholar 

  27. Miller J, Miller J (2005) Statistics and chemometrics for analytical chemistry, ch 5, 5th edn. Pearson Education Ltd, Essex, pp 115–118

    Google Scholar 

  28. Tang D, Niessner R, Knopp D (2009) Flow-injection electrochemical immunosensor for the detection of human IgG based on glucose oxidase-derivated biomimetic interface. Biosens Bioelectron 24:2125

    Article  CAS  Google Scholar 

  29. Yin Z, Cui R, Liu Y, Jiang L, Zhu J (2010) Ultrasensitive electrochemical immunoassay based on cadmium ion-functionalized PSA@PAA nanospheres. Biosens Bioelectron 25:1319

    Article  CAS  Google Scholar 

  30. Yang X, Yuan R, Chai Y, Zhuo Y, Mao L, Yuan S (2010) Ru(bpy) 2+3 -doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosens Bioelectron 25:1851

    Article  CAS  Google Scholar 

  31. Leng C, Lai G, Yan F, Ju H (2010) Gold nanoparticles as an electrochemical label for inherently crosstalk-free multiplexed immunoassay on a disposable chip. Anal Chim Acta 666:97

    Article  CAS  Google Scholar 

  32. Tian D, Duan C, Wang W, Cui H (2010) Ultrasensitive electrochemiluminescence immunosensor based on luminal functionalized gold nanoparticle labeling. Biosens Bioelectron 25:2290

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors appreciate the support of the High-Qualified Talent Foundation of Fuzhou University (0460-022275), the National Basic Research Program of China (2010CB732403), the National Natural Science Foundation of China (20877019, 20735002), and NTU-MOE Academic Research Funds (RG65/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianping Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, D., Tang, J., Su, B. et al. Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles. Microchim Acta 171, 457–464 (2010). https://doi.org/10.1007/s00604-010-0442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0442-x

Keywords

Navigation