Skip to main content
Log in

Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a biosensor for organophosphate pesticides (OPs) by exploiting their inhibitory effect on the activity of acetylcholinesterase (AChE). A boron-doped diamond (BDD) electrode was modified with a nanocomposite prepared from carbon spheres (CSs; with an average diameter of 500 nm) that were synthesized from resorcinol and formaldehyde, and then were coated with gold nanoparticles (AuNPs) by chemically growing them of the CSs. Compared to a bare BDD electrode, the electron transfer resistance is lower on this new electrode. Compared to an electrode without Au-NPs, the peak potential is negatively shifted by 42 mV, and the peak current is increased by 55 %. This is ascribed to the larger surface in the AuNP-CS nanocomposite which improves the adsorption of AChE, enhances its activity, and facilitates electrocatalysis. Under optimum conditions, the inhibitory effect of chlorpyrifos is linearly related to the negative log of its concentration in the 10−11 to 10−7 M range, with a detection limit of 1.3 × 10−13 M. For methyl parathion, the inhibition effect is linear in the 10−12 to 10−6 M range, and the detection limit is 4.9 × 10−13 M. The biosensor exhibits good precision and acceptable operational and temporal stability.

A novel acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres was firstly prepared to detect organophosphate pesticides. This biosensor exhibited higher sensitivity, lower detection limit, good reproducibility and acceptable stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pan D, Ma SM, Bo XJ, Guo LP (2011) Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon. Microchim Acta 173:215

    Article  CAS  Google Scholar 

  2. Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193

    Article  CAS  Google Scholar 

  3. Huang B, Zhang W-D, Chen C-H, Yu Y-X (2010) Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode. Microchim Acta 171:57

    Article  CAS  Google Scholar 

  4. Wei W, Zong XM, Wang X, Yin LH, Pu YP, Liu SQ (2012) A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol–gel film modified screen-printed carbon electrode. Food Chem 135:888

    Article  CAS  Google Scholar 

  5. Du D, Wang M, Cai J, Qin Y, Zhang A (2010) One-step synthesis of multiwalled carbon nanotubes–gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sensors Actuators B 143:524

    Article  CAS  Google Scholar 

  6. Sun X, Du S, Wang X (2012) Amperometric immunosensor for carbofuran detection based on gold nanoparticles and PB-MWCNTs-CTS composite film. Eur Food Res Technol 235:469

    Article  CAS  Google Scholar 

  7. Li J, Yang Z-J, Zhang Y-C, Yu S-H, Xu Q, Qu Q-S, Hu X-Y (2012) Tin disulfide nanoflakes decorated with gold nanoparticles for direct electrochemistry of glucose oxidase and glucose biosensing. Microchim Acta 179:265

    Article  CAS  Google Scholar 

  8. Cao XD, Ye YK, Liu SQ (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417:1

    Article  CAS  Google Scholar 

  9. Buiculescu R, Chaniotakis NA (2012) The stabilization of Au NP–AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor. Bioelectrochemistry 86:72

    Article  CAS  Google Scholar 

  10. Norouzi P, Pirali-Hamedani M, Ganjali MR, Faridbod FA (2010) A novel acetyl cholinesterase biosensor based on chitosan–gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434

    CAS  Google Scholar 

  11. Gong J, Wang L, Zhang L (2009) Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron 24:2285

    Article  CAS  Google Scholar 

  12. Du D, Ye X, Cai J, Liu J, Zhang A (2010) Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens Bioelectron 25:2503

    Article  CAS  Google Scholar 

  13. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24:2772

    Article  CAS  Google Scholar 

  14. Zamfir L-G, Rotariu L, Bala C (2011) A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron 26:3692

    Article  CAS  Google Scholar 

  15. Chauhan N, Pundir CS (2011) An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multiwalled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal Chim Acta 701:66

    Article  CAS  Google Scholar 

  16. Ivanov AN, Younusov RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G (2011) Acetylcholinesterase biosensor based on single-walled carbon nanotubes–cophthalocyanine for organophosphorus pesticide detection. Talanta 85:216

    Article  CAS  Google Scholar 

  17. Yang Z-J, Huang X-C, Li J, Zhang Y-C, Yu S-H, Xu Q, Hu X-Y (2012) Carbon nanotubes-functionalized urchin-like In2S3 nanostructure for sensitive and selective electrochemical sensing of dopamine. Microchim Acta 177:381

    Article  CAS  Google Scholar 

  18. Li J, Yang Z-J, Tang Y, Zhang Y-C, Hu X-Y (2013) Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 41:698

    Article  CAS  Google Scholar 

  19. Xu QN, Yan F, Lei JP, Leng C, Ju HX (2012) Disposable electrochemical immunosensor by using carbon sphere/gold nanoparticle composites as labels for signal amplification. Chem Eur J 18:4994

    Article  CAS  Google Scholar 

  20. Ho JA, Lin YC, Wang LS, Hwang KC, Chou PT (2009) Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with CdS biotracers. Anal Chem 81:1340

    Article  CAS  Google Scholar 

  21. Tang SC, Vongehr S, Meng XK (2010) Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties. J Mater Chem 20:5436

    Article  CAS  Google Scholar 

  22. Du D, Zou ZX, Shin YS, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin YH (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82:2989

    Article  CAS  Google Scholar 

  23. Wei M, Sun LG, Xie ZY, Zhi JF, Fujishima A, Einaga Y, Fu DG, Wang XM, Gu ZZ (2008) Selective determination of dopamine on boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte coated polystyrene colloid. Adv Funct Mater 18:1414

    Article  CAS  Google Scholar 

  24. Ivandini TA, Rao TN, Fujishima A, Einaga Y (2006) Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal Chem 78:3467

    Article  CAS  Google Scholar 

  25. Spataru N, Sarada BV, Popa E, Tryk DA, Fujishima A (2001) Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal Chem 73:514

    Article  CAS  Google Scholar 

  26. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Liu QG (2011) Extension of the stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947

    Article  CAS  Google Scholar 

  27. Lin Y, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16:145

    Article  CAS  Google Scholar 

  28. Gong J, Liu T, Song D, Zhang X, Zhang L (2009) One-step fabrication of three dimensional porous calcium carbonate–chitosan composite film as the immobilization matrix of acetylcholinesterase and its biosensing on pesticide. Electrochem Commun 11:1873

    Article  CAS  Google Scholar 

  29. Raghu P, Swamy BEK, Reddy TM, Chandrashekar BN, Reddaiah K (2011) Sol–gel immobilized biosensor for the detection of organophosphorous pesticides: a voltammetric method. Bioelectrochemistry 83:19

    Article  CAS  Google Scholar 

  30. Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613

    Article  CAS  Google Scholar 

  31. Chauhan N, Narang J, Pundir CS (2011) Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosens Bioelectron 29:82

    Article  CAS  Google Scholar 

  32. Liu T, Xu MR, Yin HS, Ai SY, Qu XJ, Zong SS (2011) A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides. Microchim Acta 175:129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant No. 21105022), Doctor Foundation of Henan University of Technology (2010BS019), and Plan for Scientific Innovation Talent of Henan University of Technology (2012CXRC01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, M., Zeng, G. & Lu, Q. Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim Acta 181, 121–127 (2014). https://doi.org/10.1007/s00604-013-1078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1078-4

Keywords

Navigation