Skip to main content
Log in

Sensitive detection of enteropathogenic E. coli using a bfpA gene-based electrochemical sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a sensitive assay for enteropathogenic E. coli (EPEC) by integrating DNA extraction, specific polymerase chain reaction (PCR) and DNA detection using an electrode modified with the bundle-forming pilus (bfpA) structural gene. The PCR amplified products are captured on the electrode and hybridized with biotinylated detection probes to form a sandwich hybrid containing two biotinylated detection probes. The sandwich hybridization structure significantly combined the numerous streptavidin alkaline phosphatase on the electrode by biotin-streptavidin connectors. Electrochemical readout is based on dual signal amplification by both the sandwich hybridization structure and the enzyme. The electrode can satisfactorily discriminate complementary and mismatched oligonucleotides. Under optimal conditions, synthetic target DNA can be detected in the 1 pM to 10 nM concentration range, with a detection limit of 0.3 pM. EPEC can be quantified in the 10 to 107 CFU mL−1 levels within 3.5 h. The method also is believed to present a powerful platform for the screening of pathogenic microorganisms in clinical diagnostics, food safety and environmental monitoring.

An electrochemical DNA sensor was first designed to detect a bfpA gene specifically related to the EPEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horner SR, Mace CR, Rothberg LJ, Miller BL (2012) A proteomic biosensor for enteropathogenic E. Coli. Biosens Bioelectron 21:1659–1663

    Article  Google Scholar 

  2. Levine MM (1987) Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and denteroadherent. J Infect Dis 155:377–389

    Article  CAS  Google Scholar 

  3. Donnenberg MS, Kaper JB, Finlay BB (1997) Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol 5:109–114

    Article  CAS  Google Scholar 

  4. Sohel I, Puente JL, Murray WJ, Varkila JV, Schoolnik GK (1993) Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol Microbiol 7:563–575

    Article  CAS  Google Scholar 

  5. Sur D, Bhattacharya SK (2006) Acute diarrhea diseases-an approach to management. J Indian Med Assoc 104:220–223

    Google Scholar 

  6. Li Q, Cheng W, Zhang DC, Yu TX, Yin YB, Ju HX, Ding SJ (2012) Rapid and sensitive strategy for Salmonella detection using an InvA gene- based electrochemical DNA sensor. Int J Electrochem Sci 7:844–856

    CAS  Google Scholar 

  7. Xu S (2012) Electromechanical biosensors for pathogen dectection. Microchim Acta 178:245–260

    Article  CAS  Google Scholar 

  8. Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Nanorparticle-based biosensor for detection of pathogenic bacteria. TrAC Trends Anal Chem 28:1243–1252

    Article  CAS  Google Scholar 

  9. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28

    Article  CAS  Google Scholar 

  10. Bahsi ZB, Büyükaksoy A, Ölmezcan SM, Şimşek F, Aslan MH, Oral AY (2009) A novel label-free optical biosensor using synthetic oligonucleotides form E.coli O157:H7 elementary sensitivity test. Sensors 9:4890–4900

    Article  CAS  Google Scholar 

  11. Mao XL, Yang LJ, Su XL, Li YB (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron 21:1178–1185

    Article  CAS  Google Scholar 

  12. Pathirana ST, Barbaree J, Chin BA, Hartell MG, Neely WC, Vodyanoy V (2000) Rapid and sensitive biosensor for Salmonella. Biosens Bioelectron 15:135–141

    Article  CAS  Google Scholar 

  13. Gehring AG, Tu SI (2005) Enzyme-linked immunomagnetic electrochimdal detection of live Escherichia coli O157:H7 in apple juice. J Food Prot 68:146–149

    CAS  Google Scholar 

  14. Li SQ, Li YG, Chen HQ, Horikawa S, Shen W, Simonian A, Chin BA (2010) Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens Bioelectron 26:1313–1319

    Article  CAS  Google Scholar 

  15. Villamizar RA, Maroto A, Rius FX, Inza I, Figueras MJ (2008) Fast detection of Salmonella infantis with carbon nanotube field effect transistors. Biosens Bioelectron 24:279–283

    Article  CAS  Google Scholar 

  16. Liao JC, Mastali M, Li Y, Gau V, Suchard MA, Babbit J, Gornbein J, Landaw EM, Mccabe BM, Churchill ERB, Haake DA (2007) Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J Mol Diagn 9:158–168

    Article  CAS  Google Scholar 

  17. Salam F, Tothill IE (2009) Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosens Bioelectron 24:2630–2636

    Article  CAS  Google Scholar 

  18. Luo CH, Lei YN, Yan L, Yu TX, Li Q, Zhang DC, Ding SJ, Ju HX (2012) A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia coli O111. Electroanalysis 24:1186–1191

    Article  CAS  Google Scholar 

  19. Li JJ, Xu M, Huang HP, Zhou JJ, Abdel-Halimb ES, Zhang JR, Zhu JJ (2011) Aptamer-quantum dots conjugates-based ultrasensitive competitive electrochemical cytosensor for the detection of tumor cell. Talanta 85:2113–2120

    Article  CAS  Google Scholar 

  20. Du P, Li HX, Mei ZH, Liu SF (2009) Electrochemical DNA biosensor for the detection of DNA hybridization with the amplification of Au nanoparticles and CdS nanoparticles. Bioelectrochemistry 75:37–43

    Article  CAS  Google Scholar 

  21. Ding CF, Zhao F, Zhang ML, Zhang SS (2008) Hybridization biosensor using 2,9-dimethyl-1,10-phenantroline cobalt as electrochemical indicator for detection of hepatitis B virus DNA. Bioelectrochemistry 72:28–33

    Article  CAS  Google Scholar 

  22. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245–270

    Article  CAS  Google Scholar 

  23. Donnenberg MS, Girón JA, Nataro JP, Kaper JB (1992) A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adhernce. Mol Microbiol 6:3427–3437

    Article  CAS  Google Scholar 

  24. Anantha RP, Stone KD, Donnenberg MS (1998) Role of BfpF, a member of PilT family of putative nucleotide-bingd proteins, in Type IV pilus biogenesis and in interactions between enteropathogenic Escherichia coli and host cells. Infect Immun 66:122–131

    CAS  Google Scholar 

  25. Gunzburg ST, Tornieporth NG, Riley LW (1995) Identification of enteropathogenic Escherichia coli by PCR-based detection of the bundle-forming pilus gene. J Clin Microbiol 33:1375–1377

    CAS  Google Scholar 

  26. Cheng W, Ding SJ, Li Q, Yu TX, Yin YB, Ju HX, Ren GS (2012) A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension. Biosens Bioelectron 36:12–17

    Article  CAS  Google Scholar 

  27. Cheng AKH, Ge BX, Yu HZ (2007) Aptamer-based biosensors for label-free voltammetric detction of lysozyme. Anal Chem 79:5158–5164

    Article  CAS  Google Scholar 

  28. Qian H, He L (2009) Surface-initiated activators generated by electro transfer for atom transfer radical polymerization in detection of DNA point mutation. Anal Chem 81:4536–4542

    Article  CAS  Google Scholar 

  29. Zhang J, Chen PP, Wu XY, Chen JH, Xu LJ, Chen GN, Fu FF (2011) A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 26:2645–2650

    Article  CAS  Google Scholar 

  30. Zhu X, Zhang YS, Yang WQ, Liu QD, Lin ZY, Qiu B, Chen GN (2011) Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Anal Chim Acta 684:121–125

    Article  CAS  Google Scholar 

  31. Ye SJ, Li HX, Cao W (2011) Electrogenerated chemiluminescence detection of adenosine based on triplex DNA biosensor. Biosens Bioelectron 26:2215–2220

    Article  CAS  Google Scholar 

  32. Labuda J, Ovádeková R, Galandová J (2009) DNA-based biosensor for the detection of strong damage to DNA by the quinazoline derivative as a potential anticancer agent. Microchim Acta 164:371–377

    Article  CAS  Google Scholar 

  33. Qi XW, Gao HW, Zhang YY, Wang XZ, Chen Y, Sun W (2012) Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of staphylococcus aureus nuc gene sequence. Bioelectrochemistry 88:42–47

    Article  CAS  Google Scholar 

  34. Tsai TH, Thiagarajan S, Chen SM (2010) Green synthesis of silver nanoparticles using ionic liquid and application for the detection of dissolved oxygen. Electroanalysis 22:680–687

    Article  CAS  Google Scholar 

  35. Song J, Xu JM, Zhao PS, Lu LD, Bao JC (2011) A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. Microchim Acta 172:117–123

    Article  CAS  Google Scholar 

  36. Li JH, Kuang DZ, Feng YL, Zhang FX, Liu MQ (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated. Microchim Acta 172:379–386

    Article  CAS  Google Scholar 

  37. Sun W, Li XQ, Wang Y, Li X, Zhao CZ, Jiao K (2009) Electrochemistry of myoglobin in Nafion and multi-walled carbon nanotubes modified carbon ionic liquid electrode. Bioelectrochemistry 75:170–175

    Article  CAS  Google Scholar 

  38. Cao W, Hu JB, Li QL, Fang WH (2009) A novel NH2/ITO ion implantation electrode:preparation characterization, and application in bioelectrochemistry. Electroanalysis 21:723–729

    Article  CAS  Google Scholar 

  39. Sun W, Guo YQ, Li TT, Ju XM, Lou J, Ruan CX (2012) Electrochemistry of horseradish peroxidase entrapped in grapheme and dsDNA composite modified carbon ionic liquid electrode. Electrochim Acta 75:381–386

    Article  CAS  Google Scholar 

  40. He XX, Su J, Wang YH, Wang KM, Ni XQ, Chen ZF (2011) A sensitive signal-on electrochemical assay for MTase activity using AuNPs amplification. Biosens Bioelectron 28:298–303

    Article  CAS  Google Scholar 

  41. Botkin DJ, Galli L, Sankarapani V, Soler M, Rivas M, Torres AG (2012) Development of a multiplex PCR assay for detection of Shiga toxin-producing Escherichia coli, enterohemorrhagic E. coli, and enteropathogenic E. coli strains. Front Cell Infect Microbiol 2:1–10

    Article  Google Scholar 

  42. Persson S, Olsen KEP, Scheutz F, Krogfelt KA, Gerner-Smidt P (2007) A method for fast and simple detection of major diarrhoeagenic Escherichia coli in the routine diagnostic laboratory. Clin Microbiol Infect 13:516–524

    Article  CAS  Google Scholar 

  43. Aranda KRS, Fabbricotti SH, Fagundes-Neto U, Scaletsky ICA (2007) Single multiplex assay to identify simultaneously enteropathogenic, enteroaggregative, enterotoxigenic, enteroinvasive and Shiga toxin-producing Escherichia coli strains in Brazilian children. FEMS Microbioll Lett 267:145–150

    Article  CAS  Google Scholar 

  44. Antikainen J, Tarkka E, Haukka K, Siitonen A, Vaara M, Kirveskari J (2009) New 16-plex PCR method for rapid detection of diarrheagenic Escherichia coli directly from stool samples. Eur J Clin Microbiol Infect Dis 28:899–908

    Article  CAS  Google Scholar 

  45. Linman MJ, Sugerman K, Cheng Q (2010) Detection of low levels of Escherichia coli in fresh spinac by surface plasmon resonance spectroscopy with a TMB-based enzymatic signal enhancement method. Sensors Actuators B 145:613–619

    Article  CAS  Google Scholar 

  46. Galikowska E, Kunikowska D, Tokarska-Pietrzak E, Dziadziuszko H, Łoś JM, Golec P, Węgrzyn G, Łoś M (2011) Specific detection of Salmonella enterica and Escherichia coli strains by using ELISA with bacteriophages as recognition agents. Eur J Clin Microbiol Infect Dis 30:1067–1073

    Article  CAS  Google Scholar 

  47. Neely E, Bell C, Finlay D, McCappin J, Wilson I, Ball HJ (2004) Development of a capture/enrichment sandwich ELISA for the rapid detection of enteropathogenic and enterohaemorrhagic Escherichia coli O26 strains. J Appl Microbiol 97:1161–1165

    Article  CAS  Google Scholar 

  48. Gong P, He XX, Wang KM, Tan WH, Xie WG, Wu P, Li HM (2008) Combination of functionalized nanoparticles and polymerase chain reaction-based method for SARS-CoV gene detection. J Nanosci Nanotechnol 8:293–300

    CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China (21075141 and 81101638) and supported by the Special Fund Project of Chongqing Key Laboratory (CSTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijia Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Luo, C., Zhong, L. et al. Sensitive detection of enteropathogenic E. coli using a bfpA gene-based electrochemical sensor. Microchim Acta 180, 1233–1240 (2013). https://doi.org/10.1007/s00604-013-1061-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1061-0

Keywords

Navigation