Skip to main content
Log in

A glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.

A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang L, Wang ZN, Xia Y, Kai GY, Chen WS, Tang KX (2007) Metabolic engineering of plant L-ascorbic acid biosynthesis: Recent trends and applications. Crit Rev Biotechnol 27:173

    Article  CAS  Google Scholar 

  2. McGregor GP, Biesalski HK (2006) Rational and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 9:697

    Article  CAS  Google Scholar 

  3. Arrigoni O, De TMC (2002) Ascorbic acid: Much more than just an antioxidant. Biochim Biophys Acta, Gen Subj 1569:1

    Article  CAS  Google Scholar 

  4. Gioia MG, Andreatta P, Boschetti S, Gatti R (2008) Development and validation of a liquid chromatographicmethod for the determination of ascorbicacid, dehydroascorbic acid, and acetaminophen in pharmaceuticals. J Pharm Biomed Anal 48:331

    Article  CAS  Google Scholar 

  5. Khan A, Khan MI, Iqbal Z, Shah Y, Ahmad L, Nazir S, Watson DG, Khan JA, Nasir F, Khan A, Ismail (2011) A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta 84:789

    Article  CAS  Google Scholar 

  6. Greenway GM, Ongomo P (1990) Determination of L-ascorbic acid in fruit and vegetable juices by flow injection with immobilised ascorbate oxidase. Analyst 115:1297

    Article  CAS  Google Scholar 

  7. Zhang ZJ, Li X, Wang CG, Zhang CC, Liu P, Fang TT, Xiong Y, Xu WJ (2012) A novel dinuclear Schiff-base copper (II) complex modified electrode for ascorbic acid catalytic oxidation and determination. Dalton Trans 41:1252

    Article  CAS  Google Scholar 

  8. Kumar SA, Wanga SF, Yang TCK, Yeh CT (2010) Acid yellow 9 as a dispersing agent for carbon nanotubes: Preparation of redox polymer–carbon nanotube composite film and its sensing application towards ascorbic acid and dopamine. Biosens Bioelectron 55:2592

    Article  Google Scholar 

  9. Kwakye JK (2000) The use of stabilizers in the UV assay of ascorbic acid. Talanta 51:197

    Article  CAS  Google Scholar 

  10. Zeng WM, Martinuzzi F, MacGregor A (2005) Development and application of a novel UV method for the analysis of ascorbic acid. J Pharm Biomed Anal 36:1107

    Article  CAS  Google Scholar 

  11. Yogeswaran U, Chen SM (2008) Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid. Sensors Actuators B Chem 130:739

    Article  CAS  Google Scholar 

  12. Gomathi P, Kim MK, Park JJ, Ragupathy D, Rajendran A, Lee SC, Kim JC, Lee SH, Ghim HD (2011) Multiwalled carbon nanotubes grafted chitosan nanobiocomposite: A prosperousfunctional nanomaterials for glucose biosensor application. Sensors Actuators B 155:897

    Article  CAS  Google Scholar 

  13. Zhang Y, Yuan R, Chai YQ, Zhong X, Zhong HA (2012) Carbon nanotubes incorporated with sol–gel derived La(OH)3 nanorods as platform to simultaneously determine ascorbic acid, dopamine, uric acid and nitrite. Colloids Surf B Biointerfaces 100:185

    Article  CAS  Google Scholar 

  14. Ren J, Zhang H, Ren Q, Xia C, Wan J, Qin Z (2001) Study of the catalytic electro-oxidation of ascorbic acid on an electrode modified by macrocyclic compounds of Fe (III), Mn (III), Ni (II), and Co (II) with TBP. J Electroanal Chem 504:59

    Article  CAS  Google Scholar 

  15. Nalini B, Narayanan S (2000) Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium (III) diphenyldithiocarbamate-modified carbon paste electrode. Anal Chim Acta 405:93

    Article  CAS  Google Scholar 

  16. Ozkorucuklu SP, Sahin Y, Alsancak G (2008) Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors 8:8463

    Article  CAS  Google Scholar 

  17. Zhang L (2007) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of beta-naphthalene sulfonic acid. Electrochim Acta 52:6969

    Article  CAS  Google Scholar 

  18. Khorasani-Motlagh M, Noroozifar M (2004) Electrocatalytic determination of ascrobic acid using glassy carbon modified with nickel (II) macrocycle containing dianionic tetraazaannulene ligand. Turk J Chem 28:369

    CAS  Google Scholar 

  19. Wang MY, Xu XY, Gao J (2007) Voltammetric studies of a novel bicopper complex modified glassy carbon electrode for the simultaneous determination of dopamine and ascorbic acid. J Appl Electrochem 37:705

    Article  CAS  Google Scholar 

  20. Won MS, Rahman MA, Kwon NK (2005) Square-wave Voltammetric detection of dopamine at a copper-(3-mercaptopropyl)trimethoxy silane complex modified electrode. Electroanalysis 17:2231

    Article  CAS  Google Scholar 

  21. Xu GR, Xu ML, Zhang JM (2008) Electroplymerization of negatively charge Ni (II) complex for the selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemistry 72:87

    Article  CAS  Google Scholar 

  22. Xia C, Ning W (2011) A novel bio-electrochemical ascorbic acid sensor modified with Cu4(OH)6SO4 nanorods. Analyst 136:288

    Article  Google Scholar 

  23. Lijima S (1991) Helical microtubes of graphitic carbon. Nature 354:56

    Article  Google Scholar 

  24. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105

    Article  CAS  Google Scholar 

  25. Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst 127:653

    Article  CAS  Google Scholar 

  26. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408

    Article  CAS  Google Scholar 

  27. Chen JH (2010) Piperine in carbon nanotubes of electrochemical behavior modification. Chem Eng Equip 9:1 (in chinese)

    CAS  Google Scholar 

  28. Cao HM(Tran) (1988) Handbook of preparative inorganic (volume III). Chemistry Chemical Industry Press 523

  29. Khan R, Dhayal M (2009) Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect ochratoxin-A. Biosens Bioelectron 24:1700

    Article  CAS  Google Scholar 

  30. Zuo X, Zhang H, Li N (2012) An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine–multi-walled carbon nanotubes modified glassy carbon electrode. Sensors Actuators B 161:1074

    Article  CAS  Google Scholar 

  31. Liu M, Wen YP, Xu JK, He HH, Li D, Yue RR, Liu GD (2011) An amperometric biosensor based on ascorbate oxidase immobilized in poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotubes composite films for the determination of L-ascorbic acid. Anal Sci 27:477

    Article  Google Scholar 

  32. Zuo X, Li N, Zhang H (2012) Direct electrochemical determination of ascorbic acid by a cobalt (II) tetra-neopentyloxy phthalocyanine-multi-walled carbon nanotubes glassy carbon electrode. J Mater Sci 47:2731

    Article  CAS  Google Scholar 

  33. Ngai KS, Tan WT, Zainal Z, Zawawi RBM, Zidan M (2012) Electrochemical oxidation of ascorbic acid mediated by single walled carbon nanotube/tungsten oxide nanoparticles modified glassy carbon electrode. Int J Electrochem Sci 7:4210

    CAS  Google Scholar 

  34. Zhang MN, Liu K, Xiang L, Lin YQ, Su L, Mao LQ (2007) Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. Anal Chem 79:6559

    Article  CAS  Google Scholar 

  35. Noroozifar M, Khorasani-motlagh M, Tavakkoli H (2011) Preparation of tetraheptylammonium iodide-iodine graphite-multiwall carbon nanotube paste electrode: electrocatalytic determination of ascorbic acid in pharmaceuticals and foods. Anal Sci 27:929

    Article  CAS  Google Scholar 

  36. Zhang XW, Lai GS, Yu AM, Zhang HL (2013) A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid. Microchim Acta 180:437

    Article  CAS  Google Scholar 

  37. Lin YY, Hu YL, Long YM, Di JW (2011) Determination of ascorbic acid using an electrode modified with cysteine self-assembled gold-platinum nanoparticles. Microchim Acta 175:259

    Article  CAS  Google Scholar 

  38. Tang YH, Pan HX, Wang XJ, Liu CB, Luo SL (2010) Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Microchim Acta 168:231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant No. 51273155) and the Fundamental Research Funds for the Central Universities (No. 2012-Ia-022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Li or Chaocan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Li, X., Xiong, Y. et al. A glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid. Microchim Acta 180, 1309–1316 (2013). https://doi.org/10.1007/s00604-013-1058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1058-8

Keywords

Navigation