Skip to main content
Log in

A lanthanide nanoparticle-based luminescent probe for folic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel luminescent method for the detection of folic acid (FA), a member of the vitamin B family. Y2O3 nanoparticles were doped with europium(III) ions and surface-modified with captopril. Their fluorescence is quenched by FA, and intensity is a function of folic acid concentration in the 0.1 – 40 μM concentration range. The detection limit is 83 nM of FA at pH 7 and room temperature.

In this work, we propose a novel method based on the changes in the fluorescence intensity of nanoparticles. Modified Eu-doped Y2O3 nanoparticles by captopril have been used as a probe for the detection of folic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moghaddam AB, Esmaieli M, Khodadadi AA, Ganjkhanlou Y, Asheghali D (2011) Direct electron transfer and biocatalytic activity of iron storage protein molecules immobilized on electrodeposited cobalt oxide nanoparticles. Microchim Acta 173:317–322

    Article  CAS  Google Scholar 

  2. Gao F, Luo F, Chen X, Yao W, Yin J, Yao Z, Wang L (2009) Fluorometric determination of water in organic solvents using europium ion-based luminescent nanospheres. Microchim Acta 166:163–167

    Article  CAS  Google Scholar 

  3. Alam AM, Kamruzzaman M, Lee SH, Kim YH, Kim SY, Kim GM, Jo HJ, Kim SH (2012) Determination of catecholamines based on the measurement of the metal nanoparticle-enhanced fluorescence of their terbium complexes. Microchim Acta 176:153–161

    Article  CAS  Google Scholar 

  4. Dabaghi HH, Ganjkhanlou Y, Kazemzad M, Moghaddam AB (2011) Relation between conductance, photoluminescence bands and structure of ITO nanoparticles prepared by various chemical methods. Micro Nano Lett 6:429–433

    Article  CAS  Google Scholar 

  5. Ganjkhanlou Y, Hosseinnia A, Kazemzad M, Moghaddam AB, Khanlarkhani A (2012) Y2O3:Eu, Zn nanocrystals as a fluorescent probe for the detection of biotin. Microchim Acta 177:473–478

    Article  CAS  Google Scholar 

  6. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–53

    Article  CAS  Google Scholar 

  7. Khajeamiri AR, Kobarfard F, Moghaddam AB (2012) Application of polyaniline and polyaniline/multiwalled carbon nanotubes-coated fibers for analysis of ecstasy. Chem Eng Technol 35:1515–1519

    Article  CAS  Google Scholar 

  8. Li Y, Wang P, Wang X, Cao M, Xia YS, Cao C, Liu MG, Zhu CQ (2010) An immediate luminescence enhancement method for determination of vitamin B1 using long-wavelength emitting water-soluble CdTe nanorods. Microchim Acta 169:65–71

    Article  CAS  Google Scholar 

  9. Wang H-F, He Y, Ji T-R, Yan X-P (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81:1615–1621

    Article  CAS  Google Scholar 

  10. Chen Y, Chi Y, Wen H, Lu Z (2007) Sensitized luminescent terbium nanoparticles: preparation and time-resolved fluorescence assay for DNA. Anal Chem 79:960–965

    Article  CAS  Google Scholar 

  11. Dong W, Shen HB, Liu XH, Li MJ, Li LS (2011) CdSe/ZnS quantum dots based fluorescence quenching method for determination of paeonol. Spectrochim Acta Part A 78:537–542

    Article  Google Scholar 

  12. Sun J, Liu L, Ren C, Chen X, Hu Z (2008) A feasible method for the sensitive and selective determination of vitamin B1 with CdSe quantum dots. Microchim Acta 163:271–276

    Article  CAS  Google Scholar 

  13. Hui-Lin T, Shu-Huai L, Jian-Ping L (2012) Fluorescence resonance energy transfer between quantum dots of CdSe and CdTe and its application for determination of serum prostate-specific antigen. Chin J Anal Chem 40:224–229

    Article  Google Scholar 

  14. Gao F, Luo F, Chen X, Yao W, Yin J, Yao Z, Wang L (2009) A novel nonenzymatic fluorescent sensor for glucose based on silica nanoparticles doped with europium coordination compound. Talanta 80:202–206

    Article  CAS  Google Scholar 

  15. Liang J, Huang S, Zeng D, He Z, Ji X, Ai X, Yang H (2006) CdSe quantum dots as luminescent probes for spironolactone determination. Talanta 69:126–130

    Article  CAS  Google Scholar 

  16. Negi DPS, Chanu TI (2008) Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine. Nanotechnology 19:465503–465508

    Article  Google Scholar 

  17. Tai P, Zhao Q, Su D, Li P, Stagnitti F (2010) Biological toxicity of lanthanide elements on algae. Chemosphere 80:1031–1035

    Article  CAS  Google Scholar 

  18. Mohammadi A, Ganjkhanlou Y, Moghaddam AB, Kazemzad M, Hessari FA, Dinarvand R (2012) Synthesis of nanocrystalline Y2O3:Eu phosphor through different chemical methods: studies on the chromaticity dependence and phase Conversion. Micro Nano Lett 7:515–518

    Article  Google Scholar 

  19. Muszkat M, Bialer O, Blotnick S (2010) Effects of folic acid supplementation on the pharmacokinetics and anticoagulant effect of warfarin: an open-label, prospective study of long-term administration in adults. Clin Ther 32:347–356

    Article  CAS  Google Scholar 

  20. Calle M, Usandizaga R, Sancha M, Magdaleno F (2003) Homocysteine, folic acid and B-group vitamins in obstetrics and gynaecology. Reprod Biol 107:125–134

    Google Scholar 

  21. Tyagi A, Penzkofer A (2010) Fluorescence spectroscopic behavior of folic acid. Chem Phys 367:83–92

    Article  CAS  Google Scholar 

  22. Hoekstra J, Kloosterman JV, Rompelberg C, Kranen HV (2008) Integrated risk–benefit analyses: method development with folic acid as example. Food Chem Toxicol 46:893–909

    Article  CAS  Google Scholar 

  23. Nagaraja P, Vasantha RA (2002) Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate–pyrocatechol. Anal Biochem 307:316–321

    Article  CAS  Google Scholar 

  24. Zeng B, Zhao F (2008) Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sens Actuat B 134:895–901

    Article  Google Scholar 

  25. Pividoria MI, Lermoa A, Fabianoc S (2009) Immunoassay for folic acid detection in vitamin fortified milk based on electrochemical magneto sensors. Biosens Bioelectron 24:2057–2063

    Article  Google Scholar 

  26. Bandzuchova L, Selesovska R (2011) Voltammetric determination of folic acid using liquid mercury free silver amalgam electrode. Acta Chim Slov 58:776–784

    CAS  Google Scholar 

  27. Mazloum-Ardakani M, Beitollahi H, Amini MK (2010) New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sens Actuat B 247:237–243

    Google Scholar 

  28. Vaze VD, Srivastava AK (2007) Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry. Electrochim Acta 53:1713–1721

    Article  CAS  Google Scholar 

  29. Du J, Wu Y, Hao X, Zhao X (2011) Study on the interaction between CdTe quantum dots and folic acid by two-photon excited fluorescence spectroscopic techniques. J Mol Struc 1006:650–654

    Article  CAS  Google Scholar 

  30. Wang Y, Zheng J, Fu D (2009) CdTe nanocrystals as luminescent probes for detecting ATP, folic acid and L-cysteine in aqueous solution. Colloid Surf A: Physicochem Eng Aspects 324:102–106

    Google Scholar 

  31. Moritza MG, Clavierc G, Lulekb J, Schneidera R (2012) Copper-or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. J Lumin 132:987–991

    Article  Google Scholar 

  32. Mohammadi A, Ganjkhanlou Y, Kazemzad M, Moghaddam AB, Alikhani Hessari F (2011) Effect of strontium doping on nanostructure and chromaticity of Y2O3:Eu compounds. Int J Mod Phys B 25:2949–2956

    Article  CAS  Google Scholar 

  33. Ganjkhanlou Y, Kazemzad M, Alikhani Hessari F (2010) Chromaticity dependence on Eu concentration in Y2O3:Eu nanopowders. Nano: Brief Report Rev 5:111–116

    CAS  Google Scholar 

  34. Qin X, Ju Y, Bernhard S, Yao N (2005) Flame synthesis of Y2O3:Eu nanophosphors using ethanol as precursor solvents. J Mater Res 20:2960–2968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Iran National Science Foundation (INSF) and Bonyad Melli Nokhbegan (BMN) is gratefully acknowledged. Additionally, the authors would like to thank University of Tehran Research Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolmajid Bayandori Moghaddam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudarzy, F., Moghaddam, A.B., Mozaffari, S. et al. A lanthanide nanoparticle-based luminescent probe for folic acid. Microchim Acta 180, 1257–1262 (2013). https://doi.org/10.1007/s00604-013-1050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1050-3

Keywords

Navigation