Skip to main content
Log in

Histidine-Stabilized Copper Nanoclusters as a Fluorescent Probe for Selective and Sensitive Determination of Vitamin B12

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Herein, we report the highly sensitive and selective determination of vitamin B12 (VB12) using histidine-stabilized copper nanoclusters (His-CuNCs) as a fluorescent probe by the spectrofluorometry method. The as-synthesized His-CuNCs were characterized by UV–Vis absorption, steady-state emission, and high-resolution transmission electron microscopy measurements. His-CuNCs exhibited an emission maximum around 443 nm, when excited at 350 nm. The emission intensity of His-CuNCs was significantly quenched by the addition of VB12, hinting that the synthesized probe can be employed for sensing of VB12. Based on the decrease in emission intensity, the concentration of VB12 was determined and the emission intensity of His-CuNCs can be quenched by VB12 via fluorescence resonance energy-transfer mechanism. His-CuNCs showed high selectivity toward the determination of VB12 in the presence of other potentially interfering vitamins, cations, and anions. In addition, the proposed sensing platform displayed a sensitive response to VB12 in the linear range of 4.00–28.00 × 10−6 mol dm−3 with a limit of detection of 3.30 × 10−9 mol dm−3. The proposed sensing system is simple, low cost, selective, and sensitive for the determination of VB12 in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ekinci R, Kadakal C. Determination of seven water-soluble vitamins in tarhana, a traditional turkish cereal food, by high-performance liquid chromatography. Acta Chromatogr. 2005;15:289–97.

    CAS  Google Scholar 

  2. Zittoun J, Zittoun R. Modern clinical testing strategies in cobalamin and folate deficiency. Semin Hematol. 1999;36:35–46.

    CAS  PubMed  Google Scholar 

  3. Zhang J, Tian Z, Liang L, Subirade M, Chen L. Binding interactions of β-conglycinin and glycinin with vitamin B12. J Phys Chem B. 2013;117:14018–28.

    Article  CAS  PubMed  Google Scholar 

  4. Nardone R, Tezzon F. Neurological disorders in vitamin B12 deficiency. Horiz Neurosci Res. 2010;2:119–36.

    Google Scholar 

  5. Kumar SS, Chouhan RS, Thakur MS. Enhancement of chemiluminescence for vitamin B12 analysis. Anal Biochem. 2009;388:312–6.

    Article  CAS  PubMed  Google Scholar 

  6. Marley EC, Mackay E, Young G. Characterisation of vitamin B12 immunoaffinity columns and method development for determination of vitamin B12 in a range of foods, juices and pharmaceutical products using immunoaffinity clean-up and high performance liquid chromatography with UV detection. Food Addit Contam. 2009;26:282–8.

    Article  CAS  Google Scholar 

  7. Hodson ST, Subramanian S, Allen JR. Determination of pantothenic acid, biotin, and vitamin B12 in nutritional products. J Assoc Off Anal Chem. 1984;67:994–8.

    Google Scholar 

  8. Oh RC, Brown LD. Vitamin B12 deficiency. Am Fam Physician. 2003;67:979–86.

    PubMed  Google Scholar 

  9. Samari F, Hemmateenejad B, Rezaei Z, Shamsipur M. A novel approach for rapid determination of vitamin B12 in pharmaceutical preparations using BSA-modified gold nanoclusters. Anal Methods. 2012;4:4155–60.

    Article  CAS  Google Scholar 

  10. Tomcik P, Banks CE, Davies TJ, Compton RG. A self-catalytic carbon paste electrode for the detection of vitamin B12. Anal Chem. 2004;76:161–5.

    Article  CAS  PubMed  Google Scholar 

  11. Chen JH, Jiang SJ. Determination of cobalamin in nutritive supplements and chlorella foods by capillary electrophoresis-inductively coupled plasma mass spectrometry. J Agric Food Chem. 2008;56:1210–5.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou YK, Li H, Liu Y, Liang GY. Chemiluminescence determination of vitamin B12 by a flow-injection method. Anal Chim Acta. 1991;243:127–30.

    Article  CAS  Google Scholar 

  13. Wongyai S. Determination of vitamin B12 in multivitamin tablets by multimode high-performance liquid chromatography. J Chromatogr A. 2000;870:217–20.

    Article  CAS  PubMed  Google Scholar 

  14. Jin G, Zhu YR, Jiang WQ, Xie BP, Cheng B. Spectrophotometric determination of cobalt(II) using the chromogenic reagent 4,4a-diazobenzenediazoaminoazobenzene in a micellar surfactant medium. Analyst. 1997;122:263–5.

    Article  CAS  Google Scholar 

  15. Morelli B. Determination of a quaternary mixture of vitamins B6, B1, and B12 and uridine 5′-triphosphate, by derivative spectrophotometry. J Pharm Sci. 1995;84:34–7.

    Article  CAS  PubMed  Google Scholar 

  16. Baker SA. Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry. Spectrochim Acta Part B. 2000;55:1823–32.

    Article  Google Scholar 

  17. Lambert D, Adjalla C, Felden F, Benhayoun S, Nicolas JP, Gueant JL. Identification of vitamin B12 and analogues by high-performance capillary electrophoresis and comparison with high-performance liquid chromatography. J Chromatogr A. 1992;608:311–5.

    Article  CAS  Google Scholar 

  18. Refera T, Chandravanshi BS, Alemu H. Differential pulse anodic stripping voltammetric determination of cobalt(II) with N-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Electroanalysis. 1998;10:1038–42.

    Article  CAS  Google Scholar 

  19. Zhang N, Wang W, Wang K, Ding Z, Wei Z. Rapid determination of vitamin B12 by inductively coupled plasma mass spectrometry in multivitamin tablets. Spectrosc Lett. 2008;41:332–6.

    Article  CAS  Google Scholar 

  20. Luo ZT, Nachammai V, Zhang B, Yan N, Leong DT, Jiang DE, Xie JP. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I) − thiolate complexes to evolution of Au25 nanoclusters. J Am Chem Soc. 2014;136:10577–80.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Lu DT, Zhang GM, Yang J, Dong C, Shuang SM. Glutathione capped silver nanoclusters-based fluorescent probe for highly sensitive detection of Fe3+. Sens Actuators B. 2014;202:631–7.

    Article  CAS  Google Scholar 

  22. Zhou Y, Zeng HC. Simultaneous synthesis and assembly of noble metal nanoclusters with variable micellar templates. J Am Chem Soc. 2014;136:13805–17.

    Article  CAS  PubMed  Google Scholar 

  23. Diez I, Ras RHA. Fluorescent silver nanoclusters. Nanoscale. 2011;3:1963–70.

    Article  CAS  Google Scholar 

  24. Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 2011;6:401–18.

    Article  CAS  Google Scholar 

  25. Mu X, Qi L, Dong P, Qiao J, Hou J, Nie Z, Ma H. Facile one-pot synthesis of l-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens Bioelectron. 2013;49:249–55.

    Article  CAS  PubMed  Google Scholar 

  26. Shang L, Dong S. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun. 2008;9:1088–90.

    Article  CAS  Google Scholar 

  27. Zhao XJ, Huang CZ. Water-soluble luminescent copper nanoclusters reduced and protected by histidine for sensing of guanosine 50–triphosphate. New J Chem. 2014;38:3673–7.

    Article  CAS  Google Scholar 

  28. Yang X, Shi MM, Zhou RJ, Chen XQ, Chen HZ. Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster. Nanoscale. 2011;3:2596–601.

    Article  CAS  PubMed  Google Scholar 

  29. Peng J, Hu X. A simple fluorescence quenching method for roxithromycin determination using CdTe quantum dots as probes. J Lumin. 2011;131:952–5.

    Article  CAS  Google Scholar 

  30. Dong W, Shen HB, Liu XH, Li MJ, Li LS. CdSe/ZnS quantum dots based fluorescence quenching method for determination of paeonol. Spectrochim Acta Part A. 2011;78:537–42.

    Article  CAS  Google Scholar 

  31. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006.

    Book  Google Scholar 

  32. Cao M, Liu M, Cao C, Xia Y, Bao L, Jin Y, Yang S, Zhu C. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes. Spectrochim Acta Part A. 2010;75:1043–6.

    Article  CAS  Google Scholar 

  33. Forster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys. 1948;2:55–75.

    Article  CAS  Google Scholar 

  34. Forster T. 10th spiers memorial lecture. Transf Mech Electron Excit Faraday Soc. 1959;27:7–17.

    Google Scholar 

  35. Shanmugaraj K, Ilanchelian M. Colorimetric determination of sulfide using chitosan-capped silver nanoparticles. Microchim Acta. 2016;183:1721–8.

    Article  CAS  Google Scholar 

  36. Shanmugaraj K, Ilanchelian MA. “Turn-off” fluorescent sensor for the selective and sensitive detection of copper(II) ions using lysozyme stabilized gold nanoclusters. RSC Adv. 2016;6:54518–24.

    Article  CAS  Google Scholar 

  37. Gore AH, Kale MB, Anbhule PV, Patil SR, Kolekar GB. A novel FRET probe for selective and sensitive determination of vitamin B12 by functionalized CdS QDs in aqueous media: applications to pharmaceutical and biomedical analysis. RSC Adv. 2014;4:683–92.

    Article  CAS  Google Scholar 

  38. Gholami J, Manteghian M, Badiei A, Javanbakht M, Ueda H. Label free detection of vitamin B12 based on fluorescence quenching of graphene oxide nanolayer. Fuller Nanotub Carbon Nanostruct. 2015;23:878–84.

    Article  CAS  Google Scholar 

  39. Sun J, Zhu X, Wu M. Hydroxypropyl-β-cyclodextrin enhanced determination for the vitamin B12 by fluorescence quenching method. J. Fluoresc. 2007;17:265–70.

    Article  CAS  PubMed  Google Scholar 

  40. Liu B, Liuand Z, Jing G. Fluorescence resonance energy transfer between acridine orange and rhodamine B and analytical application on determination of vitamin B12. Anal Lett. 2005;38:1367–77.

    Article  CAS  Google Scholar 

  41. Wang J, Wei J, Su S, Qiu J. Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New J Chem. 2015;39:501–7.

    Article  CAS  Google Scholar 

  42. Qu F, Song Q, You J. Rapid determination of vitamin B12 (cobalamin) based on silver nanoclusters capped by polyethyleneimine with different molecular weights and terminal group. Anal Methods. 2016;8:4324–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K. Shanmugaraj acknowledges the DST-SERB, New Delhi, India, for the award of the SERB National Post-Doctoral Fellowship (File Number: PDF/2016/002801). T. Sasikumar acknowledges the University Grants Commission (UGC)-BSR Research Fellowship (JRF) Government of India for the financial support (F.25-1/2014-15(BSR)7-26/2007/(BSR) dated: 05.11.2015). The authors are grateful to the PSG Institute of Advanced Studies, Coimbatore, for HR-TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malaichamy Ilanchelian.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugaraj, K., Sasikumar, T. & Ilanchelian, M. Histidine-Stabilized Copper Nanoclusters as a Fluorescent Probe for Selective and Sensitive Determination of Vitamin B12. J. Anal. Test. 2, 168–174 (2018). https://doi.org/10.1007/s41664-018-0054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0054-8

Keywords

Navigation