Skip to main content
Log in

Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nanostructured materials are promising candidates for chemical sensors due to their fascinating physicochemical properties. Among various candidates, tin oxide (SnO2) has been widely explored in gas sensing elements due to its excellent chemical stability, low cost, ease of fabrication and remarkable reproducibility. We are presenting an overview on recent investigations on 1-dimensional (1D) SnO2 nanostructures for chemical sensing. In particular, we focus on the performance of devices based on surface engineered SnO2 nanostructures, and on aspects of morphology, size, and functionality. The synthesis and sensing mechanism of highly selective, sensitive and stable 1D nanostructures for use in chemical sensing are discussed first. This is followed by a discussion of the relationship between the surface properties of the SnO2 layer and the sensor performance from a thermodynamic point of view. Then, the opportunities and recent progress of chemical sensors fabricated from 1D SnO2 heterogeneous nanostructures are discussed. Finally, we summarize current challenges in terms of improving the performance of chemical (gas) sensors using such nanostructures and suggest potential applications. Contains 101 references.

Nanostructural tin oxide is a promising material for chemical sensors due to its fascinating physicochemical properties. We are presenting an overview on recent investigations on 1-dimensional tin oxide nanostructures for use in chemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  2. Jurs PC, Bakken GA, McClelland HE (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100:2649–2678

    Article  CAS  Google Scholar 

  3. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Ann Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  4. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sensors Actuators B Chem 107:209–232

    Article  CAS  Google Scholar 

  5. Lu JG, Chang PC, Fan ZY (2006) Quasi-one-dimensional metal oxide materials—synthesis, properties and applications. Mater Sci Eng R-Rep 52:49–91

    Article  Google Scholar 

  6. Schaeferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed 51:3532–3554

    Article  CAS  Google Scholar 

  7. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67

    Article  CAS  Google Scholar 

  8. Comini E, Sberveglieri G (2010) Metal oxide nanowires as chemical sensors. Mater Today 13:28–36

    Article  Google Scholar 

  9. Tricoli A, Righettoni M, Teleki A (2010) Semiconductor gas sensors: dry synthesis and application. Angew Chem Int Ed 49:7632–7659

    Article  CAS  Google Scholar 

  10. Xie X, Xu W, Liu X (2012) Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc Chem Res 45:1511–1520

    Article  CAS  Google Scholar 

  11. Penner RM (2012) Chemical sensing with nanowires. Ann Rev Anal Chem 5:461–485

    Article  CAS  Google Scholar 

  12. Wang XD, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 85:487–508

    Article  CAS  Google Scholar 

  13. Maiti A, Rodriguez JA, Law M, Kung P, McKinney JR, Yang PD (2003) SnO2 nanoribbons as NO2 sensors: insights from first principles calculations. Nano Lett 3:1025–1028

    Article  CAS  Google Scholar 

  14. Tai WP, Oh JH (2002) Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films. Sensors Actuators B Chem 85:154–157

    Article  CAS  Google Scholar 

  15. Carotta MC, Gherardi S, Guidi V, Malagu C, Martinelli G, Vendemiati B, Sacerdoti M, Ghiotti G, Morandi S, Bismuto A, Maddalena P, Setaro A (2008) (Ti, Sn)O2 binary solid solutions for gas sensing: spectroscopic, optical and transport properties. Sensors Actuators B Chem 130:38–45

    Article  CAS  Google Scholar 

  16. Ma Y, Navrotsky A (2012) Thermodynamics of nanocrystalline Sn0.586Ti0.414O2 rutile solid solution: cComparison with nanocrystalline SnO2 and TiO2 and with bulk materials. J Am Ceram Soc 95:2622–2626

    Article  CAS  Google Scholar 

  17. Jimenez-Cadena G, Riu J, Rius FX (2007) Gas sensors based on nanostructured materials. Analyst 132:1083–1099

    Article  CAS  Google Scholar 

  18. Sharma A, Tomar M, Gupta V (2012) Room temperature trace level detection of NO2 gas using SnO2 modified carbon nanotubes based sensor. J Mater Sci 22:23608–23616

    CAS  Google Scholar 

  19. Rahman MM, Khan SB, Jamal A, Faisal M, Asiri AM (2012) Fabrication of a methanol chemical sensor based on hydrothermally prepared α-Fe2O3 codoped SnO2 nanocubes. Talanta 95:18–24

    Article  CAS  Google Scholar 

  20. Cui S, Wen Z, Mattson EC, Mao S, Chang J, Weinert M, Hirschmugl CJ, Gajdardziska-Josifovska M, Chen J (2013) Indium-doped SnO2 nanoparticle-graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J Mater Chem A 1:4462–4467

    Article  CAS  Google Scholar 

  21. Dai ZR, Gole JL, Stout JD, Wang ZL (2002) Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem B 106:1274–1279

    Article  CAS  Google Scholar 

  22. Mathur S, Barth S, Shen H, Pyun JC, Werner U (2005) Size-dependent photoconductance in SnO2 nanowires. Small 1:713–717

    Article  CAS  Google Scholar 

  23. Mathur S, Barth S (2007) Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures. Small 3:2070–2075

    Article  CAS  Google Scholar 

  24. Ma YJ, Zhou F, Lu L, Zhang Z (2004) Low-temperature transport properties of individual SnO2 nanowires. Solid State Commun 130:313–316

    Article  CAS  Google Scholar 

  25. Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673

    Article  CAS  Google Scholar 

  26. Chen YH, Zhang XT, Xue ZH, Du ZL, Li TJ (2005) Preparation of SnO2 nanowires by AC electrodeposition in anodic alumina template and its deposition conditions. J Inorg Mater 20:59–64

    CAS  Google Scholar 

  27. Kong XH, Li YD (2005) High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sensors Actuators B Chem 105:449–453

    Article  CAS  Google Scholar 

  28. Wan Q, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 3841–3843

  29. Wan Q, Huang J, Xie Z, Wang T, Dattoli EN, Lu W (2008) Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl Phys Lett 92:102101

    Article  Google Scholar 

  30. Kumar V, Sen S, Muthe KP, Gaur NK, Gupta SK, Yakhmi JV (2009) Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sensors Actuators B Chem 138:587–590

    Article  CAS  Google Scholar 

  31. Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N, Saito M, Mori M (2009) Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sensors Actuators B Chem 135:524–529

    Article  CAS  Google Scholar 

  32. Yanbai S, Yamazaki T, Zhifu L, Dan M, Kikuta T (2009) Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires. J Alloys Compd 488:L21–L25

    Article  Google Scholar 

  33. Wu JM (2010) A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. Nanotechnology 21:235501

    Article  Google Scholar 

  34. Hwang IS, Choi JK, Woo HS, Kim SJ, Jung SY, Seong TY, Kim ID, Lee JH (2011) Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl Mater Interfaces 3:3140–3145

    Article  CAS  Google Scholar 

  35. Sun-Woo C, Sung-Hyun J, Sang Sub K (2011) Functionalization of selectively grown networked SnO2 nanowires with Pd nanodots by gamma-ray radiolysis. Nanotechnology 22:225501

    Article  Google Scholar 

  36. Baik JM, Zielke M, Kim MH, Turner KL, Wodtke AM, Moskovits M (2010) Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4:3117–3122

    Article  CAS  Google Scholar 

  37. Pan J, Shen H, Werner U, Daniel Prades J, Hernandez-Ramirez F, Soldera F, Muecklich F, Mathur S (2011) Heteroepitaxy of SnO2 nanowire arrays on TiO2 single crystals: growth patterns and tomographic studies. J Phys Chem C 115:15191–15197

    Article  CAS  Google Scholar 

  38. Khoang ND, Trung DD, Duy NV, Hoa ND, Hieu NV (2012) Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sensors Actuators B Chem 174:594–601

    Article  CAS  Google Scholar 

  39. Liu ZQ, Zhang DH, Han S, Li C, Tang T, Jin W, Liu XL, Lei B, Zhou CW (2003) Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv Mater 15:1754–1757

    Article  CAS  Google Scholar 

  40. Hu JQ, Bando Y, Liu QL, Golberg D (2003) Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv Funct Mater 13:493–496

    Article  CAS  Google Scholar 

  41. Salviati G, Calestani D, Zha M, Zappettini A, Lazzarini L, Zanotti L, Sberveglieri G (2005) Structural and optical study of SnO2 nanobelts and nanowires. Mater Sci Eng C 25:625–630

    Article  Google Scholar 

  42. Wang B, Yang YH, Wang CX, Yang GW (2005) Nanostructures and self-catalyzed growth of SnO2. J Appl Phys 98:073520

    Article  Google Scholar 

  43. Nguyen P, Ng HT, Kong J, Cassell AM, Quinn R, Li J, Han J, McNeil M, Meyyappan M (2003) Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett 3:925–928

    Article  CAS  Google Scholar 

  44. Ramgir NS, Mulla IS, Vijayamohanan KP (2005) A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sensors Actuators B Chem 107:708–715

    Article  CAS  Google Scholar 

  45. Zhang DF, Sun LD, Yin JL, Yan CH (2003) Low-temperature fabrication of highly crystalline SnO2 nanorods. Adv Mater 15:1022–1025

    Article  CAS  Google Scholar 

  46. Chen YJ, Nie L, Xue XY, Wang YG, Wang TH (2006) Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl Phys Lett 88:083105

    Article  Google Scholar 

  47. Zhang D-F, Sun LD, Xu G, Yan CH (2006) Size-controllable one-dimensinal SnO2 nanocrystals: synthesis, growth mechanism, and gas sensing property. Phys Chem Chem Phys 8:4874–4880

    Article  CAS  Google Scholar 

  48. Lupan O, Chow L, Chai G, Schulte A, Park S, Heinrich H (2009) A rapid hydrothermal synthesis of rutile SnO2 nanowires. Mater Sci Eng B 157:101–104

    Article  CAS  Google Scholar 

  49. Li H, Xu J, Zhu Y, Chen X, Xiang Q (2010) Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires. Talanta 82:458–463

    Article  CAS  Google Scholar 

  50. Zheng MJ, Li GH, Zhang XY, Huang SY, Lei Y, Zhang LD (2001) Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane. Chem Mater 13:3859–3861

    Article  CAS  Google Scholar 

  51. Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000

    Article  CAS  Google Scholar 

  52. Wang Y, Aponte M, Leon N, Ramos I, Furlan R, Pinto N, Evoy S, Santiago-Aviles JJ (2005) Synthesis and characterization of ultra-fine tin oxide fibers using electrospinning. J Am Ceram Soc 88:2059–2063

    Article  CAS  Google Scholar 

  53. Zhang Y, He X, Li J, Miao Z, Huang F (2008) Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sensors Actuators B Chem 132:67–73

    Article  CAS  Google Scholar 

  54. Zhang Y, Li J, An G, He X (2010) Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sensors Actuators B Chem 144:43–48

    Article  CAS  Google Scholar 

  55. Yang DJ, Kamienchick I, Youn DY, Rothschild A, Kim ID (2010) Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater 20:4258–4264

    Article  CAS  Google Scholar 

  56. Kim WS, Lee BS, Kim DH, Kim HC, Yu WR, Hong SH (2010) SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21:245605

    Article  Google Scholar 

  57. Dong KY, Choi JK, Hwang IS, Lee JW, Kang BH, Ham DJ, Lee JH, Ju BK (2011) Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater. Sensors Actuators B Chem 157:154–161

    Article  CAS  Google Scholar 

  58. Cho NG, Yang DJ, Jin MJ, Kim HG, Tuller HL, Kim ID (2011) Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sensors Actuators B Chem 160:1468–1472

    Article  CAS  Google Scholar 

  59. Shin J, Choi SJ, Lee I, Youn DY, Park CO, Lee JH, Tuller HL, Kim ID (2013) Thin-wall assembled SnO2 Fibers functionalized by catalytic Pt nanoparticles and their superior exhaled- breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23:2357–2367

    Article  CAS  Google Scholar 

  60. Liu L, Zhang Y, Wang G, Li S, Wang L, Han Y, Jiang X, Wei A (2011) High toluene sensing properties of NiO-SnO2 composite nanofiber sensors operating at 330 degrees C. Sensors Actuators B Chem 160:448–454

    Article  CAS  Google Scholar 

  61. Ma Y, Navrotsky A (2010) Calorimetric study of heats of mixing in SnxTi1−xO2 rutile solid solutions. J Am Ceram Soc 93:3432–3436

    Article  CAS  Google Scholar 

  62. Ma Y, Castro RHR, Zhou W, Navrotsky A (2011) Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. J Mater Res 26:848–853

    Article  CAS  Google Scholar 

  63. Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ (2002) Energetics of nanocrystalline TiO2. Proc Natl Acad Sci 99:6476–6481

    Article  CAS  Google Scholar 

  64. Levchenko AA, Li G, Boerio-Goates J, Woodfield BF, Navrotsky A (2006) TiO2 stability landscape: polymorphism, surface energy, and bound water energetics. Chem Mater 18:6324–6332

    Article  CAS  Google Scholar 

  65. Epifani M, Prades JD, Comini E, Pellicer E, Avella M, Siciliano P, Faglia G, Cirera A, Scotti R, Morazzoni F, Morante JR (2008) J Phys Chem C 112:19540–19546

    Article  CAS  Google Scholar 

  66. Pan J, Ganesan R, Shen H, Mathur S (2010) Plasma-modified SnO2 nanowires for enhanced gas sensing. J Phys Chem C 114:8245–8250

    Article  CAS  Google Scholar 

  67. Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 48:9180–9183

    Article  CAS  Google Scholar 

  68. Oviedo J, Gillan MJ (2000) Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf Sci 463:93–101

    Article  CAS  Google Scholar 

  69. Oviedo J, Gillan MJ (2000) The energetics and structure of oxygen vacancies on the SnO2(110) surface. Surf Sci 467:35–48

    Article  CAS  Google Scholar 

  70. Yamaguchi Y, Tabata K, Yashima T (2005) First-principles calculations on the surface electronic and reactive properties of M/SnO2 (M=Ge, Mn) (110). J Mol Struct (THEOCHEM) 714:221–233

    Article  CAS  Google Scholar 

  71. Hernandez-Ramirez F, Tarancon A, Casals O, Arbiol J, Romano-Rodriguez A, Morante JR (2007) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sensors Actuators B Chem 121:3–17

    Article  CAS  Google Scholar 

  72. Tonezzer M, Hieu NV (2012) Size-dependent response of single-nanowire gas sensors. Sensors Actuators B Chem 163:146–152

    Article  CAS  Google Scholar 

  73. Gu H, Wang Z, Hu Y (2012) Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 12:5517–5550

    Article  CAS  Google Scholar 

  74. Huang J, Wan Q (2009) Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9:9903–9924

    Article  Google Scholar 

  75. Arafat MM, Dinan B, Akbar SA, Haseeb ASMA (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12:7207–7258

    Article  CAS  Google Scholar 

  76. Shaalan NM, Yamazaki T, Kikuta T (2011) Synthesis of metal and metal oxide nanostructures and their application for gas sensing. Mater Chem Phys 127:143–150

    Article  CAS  Google Scholar 

  77. Vuong DD, Sakai G, Shimanoe K, Yamazoe N (2005) Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size. Sensors Actuators B Chem 105:437–442

    Article  CAS  Google Scholar 

  78. Hwang IS, Choi JK, Kim SJ, Dong KY, Kwon JH, Ju BK, Lee JH (2009) Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO. Sensors Actuators B Chem 142:105–110

    Article  CAS  Google Scholar 

  79. Xu JQ, Wang XH, Shen JN (2006) Hydrothermal synthesis of In2O3 for detecting H2S in air. Sensors Actuators B Chem 115:642–646

    Article  CAS  Google Scholar 

  80. Choi SW, Katoch A, Sun GJ, Wu P, Kim SS (2013) NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles. J Mater Chem A 1:2834–2841

    CAS  Google Scholar 

  81. Carney CM, Yoo S, Akbar SA (2005) TiO2-SnO2 nanostructures and their H2 sensing behavior. Sensors Actuators B Chem 108:29–33

    Article  CAS  Google Scholar 

  82. Xue X, Xing L, Chen Y, Shi S, Wang Y, Wang T (2008) Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J Phys Chem C 112:12157–12160

    Article  CAS  Google Scholar 

  83. Chen YJ, Zhu CL, Wang TH (2006) The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 17:3012–3017

    Article  CAS  Google Scholar 

  84. Song X, Zhang D, Fan M (2009) A novel toluene sensor based on ZnO-SnO2 nanofiber. Appl Surf Sci 255:7343–7347

    Article  CAS  Google Scholar 

  85. Song X, Liu L (2009) Characterization of electrospun ZnO-SnO2 nanofibers for ethanol sensor. Sensors Actuators A Phys 154:175–179

    Article  CAS  Google Scholar 

  86. Park JA, Moon J, Lee SJ, Kim SH, Chu HY, Zyung T (2010) SnO2-ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor. Sensors Actuators B Chem 145:592–595

    Article  CAS  Google Scholar 

  87. Hui H, Hua G, Chee Lop C, Jun G, White TJ, Man Siu T, Ooi Kiang T (2011) Low-temperature growth of SnO2 nanorod arrays and tunable n-p-n sensing -response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv Funct Mater 21:2680–2686

    Article  Google Scholar 

  88. Hwang IS, Kim SJ, Choi JK, Choi J, Ji H, Kim G-T, Cao G, Lee JH (2010) Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO2 core-shell nanowires. Sensors Actuators B Chem 148:595–600

    Article  CAS  Google Scholar 

  89. Choi SW, Park JY, Kim SS (2009) Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology 20:465603

    Article  Google Scholar 

  90. Yao IC, Lin P, Tseng TY (2010) Hydrogen gas sensors using ZnO-SnO2 core-shell nanostructure. Adv Sci Lett 3:548–553

    Article  CAS  Google Scholar 

  91. Park JY, Choi SW, Kim SS (2011) A model for the enhancement of gas sensing properties in SnO2-ZnO core-shell nanofibres. J Phys D Appl Phys 44:205403

    Article  Google Scholar 

  92. Wei S, Zhang Y, Zhou M (2011) Toluene sensing properties of SnO2-ZnO hollow nanofibers fabricated from single capillary electrospinning. Solid State Commun 151:895–899

    Article  CAS  Google Scholar 

  93. Liu K, Sakurai M, Aono M (2012) One-step fabrication of beta-Ga2O3-amorphous-SnO2 core-shell microribbons and their thermally switchable humidity sensing properties. J Mater Chem 22:12882–12887

    Article  CAS  Google Scholar 

  94. Chen X, Guo Z, Xu WH, Yao HB, Li MQ, Liu JH, Huang XJ, Yu SH (2011) Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv Funct Mater 21:2049–2056

    Article  CAS  Google Scholar 

  95. Waggoner PS, Craighead HG (2007) Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip 7:1238–1255

  96. Hunt HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2:1544–1559

    Article  CAS  Google Scholar 

  97. Que EL, Chang CJ (2010) Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem Soc Rev 39:51–60

    Article  CAS  Google Scholar 

  98. Mubeen S, Moskovits M (2011) Gate-tunable surface processes on a single-nanowire field-effect transistor. Adv Mater 23:2306–2312

    Article  CAS  Google Scholar 

  99. Dattoli EN, Davydov AV, Benkstein KD (2012) Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. Nanoscale 4:1760–1769

    Article  CAS  Google Scholar 

  100. Li L, Huang J, Wang T, Zhang H, Liu Y, Li J (2010) An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. Biosens Bioelectron 25:2436–2441

    Article  CAS  Google Scholar 

  101. Fang Y, Guo S, Zhu C, Dong S, Wang E (2010) One-dimensional carbon nanotube/SnO2/noble metal nanoparticle hybrid nanostructure: synthesis, characterization, and electrochemical sensing. Chem Asian J 5:1838–1845

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y. M. and Y. Q. acknowledge support from the Ministry of Science and Technology of China through a 973-program under Grant 2012CB19401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Qu, Y. & Zhou, W. Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors. Microchim Acta 180, 1181–1200 (2013). https://doi.org/10.1007/s00604-013-1048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1048-x

Keywords

Navigation