Skip to main content

Advertisement

Log in

Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticles-streptavidin conjugates for signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a highly sensitive and selective molecular beacon-based electrochemical impedance biosensor for the sequence-specific detection of DNA. DNA-capped conjugates between gold nanoparticles (Au-NPs) and streptavidin are used for signal amplification. The molecular beacon was labeled with a thiol at its 5′ end and with biotin at its 3′ end, and then immobilized on the surface of a bare gold electrode through the formation of Au-S bonds. Initially, the molecular beacon is present in the “closed” state, and this shields the biotin from being approached by streptavidin due to steric hindrance. In the presence of the target DNA, the target DNA molecules hybridize with the loop and cause a conformational change that moves the biotin away from the surface of the electrode. The biotin thereby becomes accessible for the reporter (the DNA-streptavidin capped Au-NPs), and this results in a distinct increase in electron transfer resistance. Under optimal conditions, the increase in resistance is linearly related to the logarithm of the concentration of complementary target DNA in the range from 1.0 fM to 0.1 μM, with a detection limit of 0.35 fM (at an S/N of 3). This biosensor exhibits good selectivity, and acceptable stability and reproducibility.

We fabricated a novel sensitive electrochemical DNA biosensor based on the molecular beacon and conjugates composed of report DNA, Au-NPs and streptavidin (DAS) amplification signal protocol. The biosensor exhibits high sensitivity and good specificity even for single-mismatched DNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  2. Tsourkas A, Behlke MA, Rose SD, Bao G (2003) Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res 31:1319–1330

    Article  CAS  Google Scholar 

  3. Bonnet G, Tyagi S, Libchaber A, Kramer FR (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci 96:6171–6176

    Article  CAS  Google Scholar 

  4. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370

    Article  CAS  Google Scholar 

  5. Li F, Huang Y, Yang Q, Zhong ZT, Li D, Wang LH, Song SP, Fan CH (2010) A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2:1021–1026

    Article  CAS  Google Scholar 

  6. Mao X, Jiang JH, Xu XM, Chu X, Luo Y, Shen GL, Yu RQ (2008) Enzymatic amplification detection of DNA based on “molecular beacon” biosensors. Biosens Bioelectron 23:1555–1561

    Article  CAS  Google Scholar 

  7. Xiao Y, Qu XG, Plaxco KW, Heeger AJ (2007) Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. J Am Chem Soc 129:11896–11897

    Article  CAS  Google Scholar 

  8. Lin LQ, Liu QC, Wang LM, Liu AL, Weng SH, Lei Y, Chen W, Lin XH, Chen YZ (2011) Enzyme-amplified electrochemical biosensor for detection of PML-RAR α fusion gene based on hairpin LNA probe. Biosens Bioelectron 28:277–283

    Article  CAS  Google Scholar 

  9. Liu ZY, Zhang W, Zhu SY, Zhang L, Hu LZ, Parveen SM, Xu GB (2011) Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosens Bioelectron 29:215–218

    Article  Google Scholar 

  10. Fan H, Zhao K, Lin Y, Wang XY, Wu B, Li QG, Cheng L (2011) A new electrochemical biosensor for DNA detection based on molecular recognition and lead sulfide nanoparticles. Anal Biochem 419:168–172

    Article  CAS  Google Scholar 

  11. Wang Y, Li CJ, Li XH, Li YF, Kraatz HB (2008) Unlabeled hairpin-DNA probe for the detection of single-nucleotide mismatches by electrochemical impedance spectroscopy. Anal Chem 80:2255–2260

    Article  CAS  Google Scholar 

  12. Liu G, Wan Y, Gau V, Zhang J, Wang LH, Song SP, Fan CH (2008) An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. J Am Chem Soc 130:6820–6825

    Article  CAS  Google Scholar 

  13. Farjami E, Clima L, Gothelf K, Ferapontova EE (2011) “Off-on” electrochemical hairpin-DNA-based genosensor for cancer diagnostics. Anal Chem 83:1594–1602

    Article  CAS  Google Scholar 

  14. Hwang S, Kim E, Kwak J (2005) Electrochemical detection of DNA hybridization using biometallization. Anal Chem 77(2):579–584

    Article  CAS  Google Scholar 

  15. Bonanni A, Esplandiu MJ, Valle M (2008) Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles. Electrochim Acta 53:4022–4029

    Article  CAS  Google Scholar 

  16. Meng XM, Xu MR, Zhu JY, Yin HS, Ai SY (2012) Fabrication of DNA electrochemical biosensor based on gold nanoparticle locked nucleic acid modified hairpin DNA and enzymatic signal amplification. Electrochim Acta 71:233–238

    Article  CAS  Google Scholar 

  17. Chen X, Hong CY, Lin YH, Chen JH, Chen GN, Yang HH (2012) Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures. Anal Chem 84:8277–8283

    Article  CAS  Google Scholar 

  18. Dong XY, Mi XN, Wang B, Xu JJ, Chen HY (2011) Signal amplification for DNA detection based on the HRP-functionalized Fe3O4 nanoparticles. Talanta 84:531–537

    Article  CAS  Google Scholar 

  19. Patolsky F, Ranjit KT, Lichtenstein A, Willner I (2000) Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem Commun 12:1025–1026

    Article  Google Scholar 

  20. Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011

    Article  CAS  Google Scholar 

  21. Li XM, Fu PY, Liu JM, Zhang SS (2010) Biosensor for multiplex detection of two DNA target sequences using enzyme-functionalized Au nanoparticles as signal amplification. Anal Chim Acta 673:133–138

    Article  CAS  Google Scholar 

  22. Wang J, Li JH, Baca AJ, Hu JB, Zhou FM, Yan W, Pang DW (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  CAS  Google Scholar 

  23. Huang L, Zhang YZ (2012) Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene. Microchim Acta 176:463–470

    Article  Google Scholar 

  24. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  25. Zhang LP, Gong WJ, Pan Y, Zhang YZ (2008) Fabrication of multilayer film modified gold electrode composed of myoglobin, chitosan, and polyelectrolyte wrapped multi-wall carbon nanotubes by layer-by-layer assembled technique and electrochemical catalysis for hydrogen peroxide and trichloroacetic acid. Russ J Electrochem 44(11):1271

    Article  Google Scholar 

  26. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, Porter RA (2010) Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods 356:60–69

    Article  CAS  Google Scholar 

  27. Döllefeld H, Weller H, Eychmüller A (2001) Particle-particle interactions in semiconductor nanocrystal assemblies. Nano Lett 1:267–269

    Article  Google Scholar 

  28. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101:14036–14039

    Article  CAS  Google Scholar 

  29. Dong X, Lu XC, Zhang KY, Zhang YZ (2013) Chronocoulometric DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, poly (dopamine) and carbon nanotubes. Microchim Acta 180:101–108

    Article  CAS  Google Scholar 

  30. Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580

    Article  CAS  Google Scholar 

  31. Fan CH, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci U S A 100:9134–9137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 20675002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Jiang, W., Han, X. et al. Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticles-streptavidin conjugates for signal amplification. Microchim Acta 180, 1271–1277 (2013). https://doi.org/10.1007/s00604-013-1044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1044-1

Keywords

Navigation