Skip to main content
Log in

An indium tin oxide electrode modified with gold nanorods for use in potential-controlled surface plasmon resonance studies

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The modification of electrodes with gold nanoparticles results in an increased electrode surface area, enhanced mass transport, and improved catalytic properties. We have extended this approach to indium tin oxide (ITO) electrodes to obtain optically transparent gold nanorod-modified electrodes which display enhanced electrochemical capabilities and have the additional advantage of showing a tunable surface plasmon resonance. The procedures for attaining high surface coverage (15 gold nanorods per square µm) of such electrodes were optimized, and the potential-dependent surface plasmon resonance was studied under controlled electrical potential. In an exemplary sensor application, we demonstrate the detection of mercury via potential-dependent formation of an Au-Hg amalgam.

Immobilization of gold nanorods on optically transparent ITO electrodes provides tunable surface plasmon resonance detection coupled with electrochemical potential control. These novel sensors are applied to the detection and quantification of mercury with a combined SPR-electrochemical technique

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jones SEW, Compton RG (2008) Fabrication and applications of nanoparticle-modified electrodes in stripping analysis. Curr Anal Chem 4:177–182

    Article  Google Scholar 

  2. Hernández-Santos D, González-García MB, García AC (2002) Metal-nanoparticles based electroanalysis. Electroanal 14:1225–1235

    Article  Google Scholar 

  3. Welch CM, Nekrassova O, Dai X, Hyde ME, Compton RG (2004) Fabrication, characterization and voltammetric studies of gold amalgam nanoparticle modified electrodes. Chem Phys Chem 5:1405–1410

    Article  CAS  Google Scholar 

  4. Ballarin B, Cassani MC, Maccato C, Gasparotto A (2011) RF-sputtering preparation of gold-nanoparticle-modified ITO eletrodes for electrocatalytic applications. Nanotechnol 22:275711–275720

    Article  CAS  Google Scholar 

  5. Cheng W, Dong S, Wang E (2002) Gold nanoparticles as fine tuners of electrochemical properties of the electrode/solution interface. Langmuir 18:9947–9952

    Article  CAS  Google Scholar 

  6. Zhang J, Oyama M (2004) A hydrogen peroxide sensor based on peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta 50:85–90

    Article  CAS  Google Scholar 

  7. Zhou N, Chen H, Chen L (2013) Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim Acta 180:493–499

    Article  CAS  Google Scholar 

  8. Chen Z, Zu Y (2007) Gold nanoparticle-modified ITO electrode for electrogenerated chemiluminescence: well-preserved transparency and highly enhanced activity. Langmuir 23:11387–11390

    Article  CAS  Google Scholar 

  9. Lin J, Zhang L, Zhang S (2007) Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode. Anal Biochem 370:180–185

    Article  CAS  Google Scholar 

  10. Richardson JN, Aguilar Z, Kaval N, Andrea SE, Shtoyko T, Seliskar CJ, Heineman WR (2003) Optical and electrochemical evaluation of colloidal Au nanoparticle-ITO hybrid optically transparent electrodes and their application to attenuated total reflectance spectroelectrochemistry. Electrochim Acta 48:4291–4299

    Article  CAS  Google Scholar 

  11. Ballarin B, Cassani MC, Scavetta E, Tonelli D (2008) Self-assembled gold nanoparticles modified ITO electrodes: The monolayer binder molecule effect. Electrochim Acta 53:8034–8044

    Article  CAS  Google Scholar 

  12. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  13. Nikoobakht B, El-Sayed MA (2003) Surface-enhanced raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378

    Article  CAS  Google Scholar 

  14. Ming T, Zhao L, Chen H, Sun L, Wang J, Yan C (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9:3896–3903

    Article  CAS  Google Scholar 

  15. Hore MJA, Composto RJ (2010) Nanorod self-assembly for tuning optical absorption. ACS Nano 4:6941–6949

    Article  CAS  Google Scholar 

  16. Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Hook F, Wax A, Chilkoti A (2008) Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 80:984–989

    Article  CAS  Google Scholar 

  17. Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J Am Chem Soc 125:13914–13915

    Article  CAS  Google Scholar 

  18. Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potl P, Carbo-Argibay E, Pazos-Perez N, Vigderman L, Zubarev ER, Kotov NA, Liz-Marzan LM (2011) Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrabmled prions. PNAS 108:8157–8161

    Article  CAS  Google Scholar 

  19. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH (2008) A label-free immunoassay based upon localized surface plasmon resonance of gold nanorod. ACS Nano 2:687–692

    Article  CAS  Google Scholar 

  20. Ferhan AR, Guo L, Kim D-H (2010) Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Langmuir 26:12433–12442

    Article  CAS  Google Scholar 

  21. Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78:445–451

    Article  CAS  Google Scholar 

  22. Hillebrandt H, Tanaka M (2001) Electrochemical characterization of self-assembled alkylsiloxane monolayers on Indium-Tin Oxide (ITO) semiconductor electrodes. J Phys Chem B 105:4270–4276

    Article  CAS  Google Scholar 

  23. Muthurasu A, Ganesh V (2012) Electrochemical characterization of Self-assembled Monolayers (SAMS) of silanes on indium tin oxide (ITO) electrodes—Tuning electron transfer behaviour across electrode-electrolyte interface. J Colloid Interface Sci 374:241–249

    Article  CAS  Google Scholar 

  24. Chinowsky TM, Saban SB, Yee SS (1996) Experimnetal data from a trace metal sensor combining surface plasmon resonance with anodic stripping voltammetry. Sensor Actuator B 35–36:37–43

    Article  Google Scholar 

  25. Jung CC, Saban SB, Yee SS, Darling RB (1996) Chemical electrode surface plasmon resonance sensor. Sensor Actuators B 32:143–147

    Article  CAS  Google Scholar 

  26. Heaton RJ, Peterson AW, Georgiadis RM (2001) Electrostatic surface plasmon resonance: direct electric field induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches. Proc Natl Acad Sci USA 98:3701–3704

    Article  CAS  Google Scholar 

  27. Finot MO, Braybrook GD, McDermott MT (1999) Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes. J Electroanal Chem 466:234–241

    Article  CAS  Google Scholar 

  28. Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63:711–734

    Article  CAS  Google Scholar 

  29. Iwasaki Y, Horiuchi T, Morita M, Niwa O (1997) Time differential surface plasmon resonance measurements applied for electrochemical analysis. Electroanal 9:1239–1241

    Article  CAS  Google Scholar 

  30. Heider EC, Trieu K, Moore AFT, Campiglia AD (2012) Portable mercury sensor for tap water using surface plasmon resonance of immobilized gold nanorods. Talanta 99:180–185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SEM images were acquired at the Materials Characterization Facility at the University of Central Florida with the assistance of Kirk Scammon. This work was funded by U.S. Department of Energy (DE-SC0004813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres D. Campiglia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heider, E.C., Trieu, K., Diaz, V.M. et al. An indium tin oxide electrode modified with gold nanorods for use in potential-controlled surface plasmon resonance studies. Microchim Acta 180, 1013–1020 (2013). https://doi.org/10.1007/s00604-013-1017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1017-4

Keywords

Navigation