Skip to main content

Advertisement

Log in

Strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have made a comparison of (a) different surface chemistries of SPR sensor chips (such as carboxymethylated dextran and carboxymethylated C1) and (b) of different assay formats (direct, sandwich and subtractive immunoassay) in order to improve the sensitivity of the determination of the model bacteria Acidovorax avenae subsp. citrulli (Aac). The use of the carboxymethylated sensor chip C1 resulted in a better sensitivity than that of carboxymethylated dextran CM5 in all the assay formats. The direct assay format, in turn, exhibits the best sensitivity. Thus, the combination of a carboxymethylated sensor chip C1 with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6 × 106 CFU mL-1. This SPR immunosensor was applied to the detection of Aac in watermelon leaf extracts spiked with the bacteria, and the lower LOD is 2.2 × 107 CFU mL−1.

Possible strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells Acidovorax avenae subsp. citrulli (Aac) was used as a model pathogen. Two different sensor surfaces (carboxymethylated dextran CM5 and carboxymethylated C1) were compared. Direct detection, sandwich system and subtractive assay were investigated. The combination of a C1 chip with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6*106 CFU mL−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta 605(2):111–129

    Article  CAS  Google Scholar 

  2. Chung JW, Kim SD, Bernhardt R, Pyun JC (2005) Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens Actuators B Chem 111–112:416–422

    Article  Google Scholar 

  3. Chung JW, Bernhardt R, Pyun JC (2006) Additive assay of cancer marker CA 19–9 by SPR biosensor. Sens Actuators B Chem 118(1–2):28–32

    Article  CAS  Google Scholar 

  4. Karlsson R, Michaelsson A, Mattsson L (1991) Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods 145(1–2):229–240

    Article  CAS  Google Scholar 

  5. O'Shannessy DJ, Brigham-Burke M, Soneson KK, Hensley P, Brooks I (1993) Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Anal Biochem 212(2):457–468

    Article  Google Scholar 

  6. Pattnaik P (2005) Surface plasmon resonance: applications in understanding receptor-ligand interaction. Appl Biochem Biotechnol 126(2):79–92

    Article  CAS  Google Scholar 

  7. Petz M (2009) Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Monatshefte für Chemie/Chemical Monthly 140(8):953–964

    Article  CAS  Google Scholar 

  8. Huet A-C, Delahaut P, Fodey T, Haughey SA, Elliott C, Weigel S (2010) Advances in biosensor-based analysis for antimicrobial residues in foods. TRAC-Trend Anal Chem 29(11):1281–1294

    Article  CAS  Google Scholar 

  9. Meneely JP, Sulyok M, Baumgartner S, Krska R, Elliott CT (2010) A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta 81(1–2):630–636

    Article  CAS  Google Scholar 

  10. Stewart LD, Elliott CT, Walker AD, Curran RM, Connolly L (2009) Development of a monoclonal antibody binding okadaic acid and dinophysistoxins-1,-2 in proportion to their toxicity equivalence factors. Toxicon 54(4):491–498

    Article  CAS  Google Scholar 

  11. Campbell K, Haughey SA, van den Top H, van Egmond H, Vilarino N, Botana LM, Elliott CT (2010) Single laboratory validation of a surface plasmon resonance biosensor screening method for paralytic shellfish poisoning toxins. Anal Chem 82(7):2977–2988

    Article  CAS  Google Scholar 

  12. Mazumdar SD, Hartmann M, Kampfer P, Keusgen M (2007) Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosens Bioelectron 22(9–10):2040–2046

    Article  CAS  Google Scholar 

  13. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22(5):752–758

    Article  CAS  Google Scholar 

  14. Haughey SA, O'Kane AA, Baxter GA, Kalman A, Trisconi MJ, Indyk HE, Watene GA (2005) Determination of pantothenic acid in foods by optical biosensor immunoassay. J AOAC Int 88(4):1008–1014

    CAS  Google Scholar 

  15. Mitchell JS, Wu Y, Cook CJ, Main L (2005) Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal Biochem 343(1):125–135

    Article  CAS  Google Scholar 

  16. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  Google Scholar 

  17. Gu JH, Lü H, Chen YW, Liu LY, Wang P, Ma JM, Lu ZH (1998) Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique. Supramol Sci 5(5–6):695–698

    Article  CAS  Google Scholar 

  18. Severs AH, Schasfoort RBM (1993) Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles. Biosens Bioelectron 8(7–8):365–370

    Article  CAS  Google Scholar 

  19. Leonard P, Hearty S, Quinn J, O'Kennedy R (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19(10):1331–1335

    Article  CAS  Google Scholar 

  20. Walcott RR, Fessehaie A, Castro AC (2004) Differences in Pathogenicity between two Genetically Distinct Groups of Acidovorax avenae subsp. citrulli on Cucurbit Hosts. J Phytopathol 152(5):277–285

    Article  Google Scholar 

  21. Melnyk O, Duburcq X, Olivier C, Urbes F, Auriault C, Gras-Masse H (2002) Peptide arrays for highly sensitive and specific antibody-binding fluorescence assays. Bioconjugate Chem 13(4):713–720

    Article  CAS  Google Scholar 

  22. Himananto O, Thummabenjapone P, Luxananil P, Kumpoosiri M, Hongprayoon R, Kositratana W, Gajanandana O (2011) Novel and highly specific monoclonal antibody to Acidovorax citrulli and development of ELISA-based detection in cucurbit leaves and seed. Plant Dis 95(9):1172–1178

    Article  CAS  Google Scholar 

  23. Iturria SJ (2005) Statistical inference for relative potency in bivariate dose–response assays with correlated responses. J Biopharm Stat 15(2):343–351

    Article  Google Scholar 

  24. Bokken GC, Corbee RJ, van Knapen F, Bergwerff AA (2003) Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol Lett 222(1):75–82

    Article  CAS  Google Scholar 

  25. Zourob M, Elwary S, Turner A (2008) Principles of bacterial detection: biosensors, recognition receptors, and microsystems. Springer, New York

    Book  Google Scholar 

  26. Taya M (2005) Electronic Composites. Cambridge University Press, Oxford

    Book  Google Scholar 

  27. Lommel AS, McCain HA, Morris JT (1982) Evaluation of indirect enzyme-linked immunosorbent assay for the detection of plant viruses. American Phytopathological Soc 72(8):1018–1022

    Article  Google Scholar 

Download references

Acknowledgments

This project and a PhD scholarship to RC were supported by National Science and Technology Development Agency (NSTDA, Thailand). NK was partially supported by a Marie Curie Fellowship under a project entitled “PathFinder” (project number 910608). We are grateful to Prof. Dr. Morakot Tanticharoen for her mentorship on Biosensor Program at NSTDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratthaphol Charlermroj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlermroj, R., Oplatowska, M., Gajanandana, O. et al. Strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells. Microchim Acta 180, 643–650 (2013). https://doi.org/10.1007/s00604-013-0975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0975-x

Keywords

Navigation