Skip to main content

Advertisement

Log in

Evaluating the Potential of an Antibody Against Recombinant OmpW Antigen in Detection of Vibrio cholerae by Surface Plasmon Resonance (SPR) Biosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR), a highly sensitive and label-free optical biosensing technique, is a powerful tool for studying biomolecular interactions. An immunosensor for rapid, sensitive, and selective detection of Vibrio cholerae on the basis of SPR is reported. Recombinant OmpW antigen (a bacterial outer-membrane protein) of V. cholerae was expressed and purified and raising of polyclonal rabbit anti-OmpW was done. Antibodies were immobilized on a sensor surface and interactions between OmpW protein and the whole cell of V. cholerae with immobilized antibodies were studied in different experiments. The aim of this study was to evaluate the potential of anti-OmpW in detection of V. cholerae by developing an immunosensor based on SPR. The results showed high affinity interaction between OmpW and anti-OmpW (K D = 2.4 ± 0.07 × 10−9 M) and SPR signals had a linear relationship with the number of V. cholerae ranging from 1 × 102 to 1 × 107 cells/mL with limit of detection of 50 cells/mL. The specificity of the developed immunoassay was examined using some non-V. cholerae bacteria which did not produce any significant responses. This method is rapid, sensitive, and specific to target V. cholerae with a total analysis time of less than 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SPR:

Surface plasmon resonance

SAM:

Self-assembled monolayer

11 MUA:

11-mercaptoundecanoic acid

OMP:

Outer membrane proteins

V. cholerae :

Vibrio cholerae

WHO:

World health organization

IPTG:

Isopropyl-b-d-thio-galactopyranoside

SDS PAGE:

Sodium dodecylsulphate polyacrylamide gel electrophoresis

Ni-NTA:

Ni-Nitrilotriacetic acid

EDC:

N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride

NHS:

N-hydroxysuccinimide

ATR–FTIR:

Attenuated total reflection fourier transform infrared

pI:

Isoelectric point

K D :

Dissociation constant

B max :

Maximum binding capacity of analyte

CFU:

Colony forming unit

ELISA:

Enzyme-linked immunosorbent assay

LOD:

Limit of detection

IMS:

Immunomagnetic separation

References

  1. Nandi B, Nandy RK, Sarkar A, Ghose AC (2005) Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151(Pt 9):2975–2986. doi:10.1099/mic.0.27995-0

    Article  CAS  Google Scholar 

  2. Connelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 402(1):117–127. doi:10.1007/s00216-011-5407-3

    Article  CAS  Google Scholar 

  3. Chatterjee SN, Chaudhuri K (2003) Lipopolysaccharides of Vibrio cholerae. Biochim Biophys Acta (BBA) - Mol Basis Dis 1639(2):65–79. doi:10.1016/j.bbadis.2003.08.004

    Article  CAS  Google Scholar 

  4. Ali M, Lopez AL, You Y, Kim YE, Sah B, Maskery B, Clemens J (2012) The global burden of cholera. Bull WHO 90(3):209–218

    Google Scholar 

  5. Nair GB, Takeda Y (2014) Cholera Outbreaks, vol 379. Springer

  6. Lautner G, Balogh Z, Bardoczy V, Meszaros T, Gyurcsanyi RE (2010) Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135(5):918–926. doi:10.1039/b922829b

    Article  CAS  Google Scholar 

  7. Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra B (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem 197:385–404

    Article  CAS  Google Scholar 

  8. Wang DB, Bi LJ, Zhang ZP, Chen YY, Yang RF, Wei HP, Zhou YF, Zhang XE (2009) Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst 134(4):738–742. doi:10.1039/b813038h

    Article  CAS  Google Scholar 

  9. Tam PD, Thang CX (2015) Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection. Mater Sci Eng C. doi:10.1016/j.msec.2015.09.027

    Google Scholar 

  10. Khemthongcharoen N, Wonglumsom W, Suppat A, Jaruwongrungsee K, Tuantranont A, Promptmas C (2015) Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens Bioelectron 63:347–353. doi:10.1016/j.bios.2014.07.068

    Article  CAS  Google Scholar 

  11. Chen W, Zhang J, Lu G, Yuan Z, Wu Q, Li J, Xu G, He A, Zheng J, Zhang J (2014) Development of an immunochromatographic lateral flow device for rapid diagnosis of Vibrio cholerae O1 serotype Ogawa. Clin Biochem 47(6):448–454

    Article  CAS  Google Scholar 

  12. Yean CY, Kamarudin B, Ozkan DA, Yin LS, Lalitha P, Ismail A, Ozsoz M, Ravichandran M (2008) Enzyme-linked amperometric electrochemical genosensor assay for the detection of PCR amplicons on a streptavidin-treated screen-printed carbon electrode. AnaCh 80(8):2774–2779

    CAS  Google Scholar 

  13. Sharma MK, Goel AK, Singh L, Rao VK (2006) Immunological biosensor for detection of Vibrio cholerae O1in environmental water samples. World J Microbiol Biotechnol 22(11):1155–1159. doi:10.1007/s11274-006-9156-y

    Article  CAS  Google Scholar 

  14. Carter R, Mekalanos J, Jacobs M, Lubrano G, Guilbault G (1995) Quartz crystal microbalance detection of Vibrio cholerae O139 serotype. J Immunol Methods 187(1):121–125

    Article  CAS  Google Scholar 

  15. Jyoung J-Y, Hong S, Lee W, Choi J-W (2006) Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosens Bioelectron 21(12):2315–2319. doi:10.1016/j.bios.2005.10.015

    Article  CAS  Google Scholar 

  16. Heiat M, Ranjbar R, Latifi AM, Rasaee MJ (2016) Selection of a High-affinity and in vivo Bioactive ssDNA Aptamer Against Angiotensin II Peptide. Peptides

  17. Lundström I (2014) From a laboratory exercise for students to a pioneering biosensing technology. Plasmonics 9(4):741–751

    Article  Google Scholar 

  18. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5):10481–10510. doi:10.3390/s150510481

    Article  CAS  Google Scholar 

  19. Geddes CD (2014) 30 years of surface plasmon resonance (SPR) for biosensing. Plasmonics 9(4):727–727. doi:10.1007/s11468-014-9763-7

    Article  CAS  Google Scholar 

  20. Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W (2017) Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron 87:433–438

    Article  CAS  Google Scholar 

  21. Nikfarjam A, Rezayan AH, Mohammadkhani G, Mohammadnejad J (2016) Label-free detection of digoxin using localized surface plasmon resonance-based nanobiosensor. Plasmonics:1–8

  22. Srivastava SK, van Rijn CJ, Jongsma MA (2016) Biosensor-based detection of tuberculosis. RSC Adv 6(22):17759–17771

    Article  CAS  Google Scholar 

  23. Wujcik EK, Wei H, Zhang X, Guo J, Yan X, Sutrave N, Wei S, Guo Z (2014) Antibody nanosensors: a detailed review. RSC Adv 4(82):43725–43745. doi:10.1039/c4ra07119k

    Article  CAS  Google Scholar 

  24. Narayanaswamy R, Wolfbeis OS (2004) Optical sensors: industrial, environmental and diagnostic applications, vol 1. Springer Science & Business Media

  25. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32(1):3–13

    Article  CAS  Google Scholar 

  26. Stojanović I, Schasfoort RBM, Terstappen LWMM (2014) Analysis of cell surface antigens by surface plasmon resonance imaging. Biosens Bioelectron 52:36–43. doi:10.1016/j.bios.2013.08.027

    Article  Google Scholar 

  27. Lemmer Y, Thanyani S, Vrey P, Driver C, Venter L, Van Wyngaardt S, Ten Bokum A, Ozoemena K, Pilcher L, Fernig D (2009) Chapter five-detection of antimycolic acid antibodies by liposomal biosensors. Methods Enzymol 464:79–104

    Article  CAS  Google Scholar 

  28. Justino CIL, Freitas AC, Pereira R, Duarte AC, Rocha Santos TAP (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal Chem 68:2–17. doi:10.1016/j.trac.2015.03.006

    Article  CAS  Google Scholar 

  29. Shanker R, Singh G, Jyoti A, Dwivedi PD, Singh SP (2014) Nanotechnology and detection of microbial pathogens. 525–540. doi:10.1016/b978-0-12-416002-6.00028-6

  30. Ahmed A, Rushworth JV, Hirst NA, Millner PA (2014) Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 27(3):631–646. doi:10.1128/CMR.00120-13

    Article  CAS  Google Scholar 

  31. Giacometti J, Tomljanović AB, Josić D (2013) Application of proteomics and metabolomics for investigation of food toxins. Food Res Int 54(1):1042–1051. doi:10.1016/j.foodres.2012.10.019

    Article  CAS  Google Scholar 

  32. Saberi F, Kamali M, Taheri RA, Ramandi MF, Bagdelic S, Mirnejad R (2016) Development of surface plasmon resonance-based immunosensor for detection of Brucella melitensis. J Braz Chem Soc 27(11):1960–1965

  33. Laure Jason-Moller MM, and JoAnne Bruno (2006) Overview of Biacore systems and their applications. Current Protocols in Protein Science

  34. Shan G (2011) Immunoassays in agricultural biotechnology. John Wiley & Sons

  35. Liu JT, Chen LY, Shih MC, Chang Y, Chen WY (2008) The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Anal Biochem 375(1):90–96. doi:10.1016/j.ab.2008.01.004

    Article  CAS  Google Scholar 

  36. Jason-Moller L, Murphy M, Bruno J (2006) Overview of Biacore systems and their applications. Current protocols in protein science:19.13. 11–19.13. 14

  37. Taheri RA, Rezayan AH, Rahimi F, Mohammadnejad J, Kamali M (2016) Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosens Bioelectron 86:484–488. doi:10.1016/j.bios.2016.07.006

    Article  CAS  Google Scholar 

  38. Sikarwar B, Sharma PK, Srivastava A, Agarwal GS, Boopathi M, Singh B, Jaiswal YK (2014) Surface plasmon resonance characterization of monoclonal and polyclonal antibodies of malaria for biosensor applications. Biosens Bioelectron 60:201–209

    Article  CAS  Google Scholar 

  39. Martinez-Govea A, Ambrosio J, Gutierrez-Cogco L, Flisser A (2001) Identification and strain differentiation of Vibrio cholerae by using polyclonal antibodies against outer membrane proteins. Clin Diagn Lab Immunol 8(4):768–771. doi:10.1128/CDLI.8.4.768-771.2001

    CAS  Google Scholar 

  40. Fasihi R (2014) Production and characterization of monoclonal and polyclonal antibody against recombinant outer membrane protein. Am J Immunol 10(1):56–62. doi:10.3844/ajisp.2014.56.62

    Article  Google Scholar 

  41. Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosens Bioelectron 21(7):998–1006. doi:10.1016/j.bios.2005.03.007

    Article  CAS  Google Scholar 

  42. Tawil N, Sacher E, Mandeville R, Meunier M (2012) Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron 37(1):24–29. doi:10.1016/j.bios.2012.04.048

    Article  CAS  Google Scholar 

  43. Jang LS, Keng HK (2008) Modified fabrication process of protein chips using a short-chain self-assembled monolayer. Biomed Microdevices 10(2):203–211. doi:10.1007/s10544-007-9126-7

    Article  CAS  Google Scholar 

  44. Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24(3):339–348. doi:10.1016/j.bios.2008.06.045

    Article  CAS  Google Scholar 

  45. Brogioni B, Berti F (2014) Surface plasmon resonance for the characterization of bacterial polysaccharide antigens: a review. MedChemComm 5(8):1058. doi:10.1039/c4md00088a

    Article  CAS  Google Scholar 

  46. Mustafa NH (2014) Detection of classical swine fever virus by a surface plasmon resonance assay. Virology & Mycology 03 (03). doi:10.4172/2161-0517.1000136

  47. Bio-Sciences GH (2008) Biacore Sensor Surface Handbook, Edition AB. GE Healthcare Bio-Sciences, Piscataway, NJ reprinted

  48. Pei Z, Anderson H, Myrskog A, Duner G, Ingemarsson B, Aastrup T (2010) Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity. Anal Biochem 398(2):161–168. doi:10.1016/j.ab.2009.11.038

    Article  CAS  Google Scholar 

  49. Chakraborty R, Hazen TC, Joyner DC, Kusel K, Singer ME, Sitte J, Torok T (2011) Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples. J Microbiol Methods 86(2):204–209. doi:10.1016/j.mimet.2011.05.005

    Article  Google Scholar 

  50. Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG (2013) Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens Bioelectron 43:432–439. doi:10.1016/j.bios.2012.12.052

    Article  CAS  Google Scholar 

  51. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Ana Chem 82(15):6401–6408

    Article  CAS  Google Scholar 

  52. Torun O, Hakki Boyaci I, Temur E, Tamer U (2012) Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosens Bioelectron 37(1):53–60. doi:10.1016/j.bios.2012.04.034

    Article  CAS  Google Scholar 

  53. Baniukevic J, Kirlyte J, Ramanavicius A, Ramanaviciene A (2013) Application of oriented and random antibody immobilization methods in immunosensor design. Sensors Actuators B Chem 189:217–223

    Article  CAS  Google Scholar 

  54. Sharma H, Mutharasan R (2013) Half antibody fragments improve biosensor sensitivity without loss of selectivity. Anal Chem 85(4):2472–2477. doi:10.1021/ac3035426

    Article  CAS  Google Scholar 

  55. Frederix F, Bonroy K, Laureyn W, Reekmans G, Campitelli A, Dehaen W, Maes G (2003) Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold. Langmuir 19(10):4351–4357

    Article  CAS  Google Scholar 

  56. Tsai W-C, Pai P-JR (2009) Surface plasmon resonance-based immunosensor with oriented immobilized antibody fragments on a mixed self-assembled monolayer for the determination of staphylococcal enterotoxin B. Microchim Acta 166(1–2):115–122. doi:10.1007/s00604-009-0171-1

    Article  CAS  Google Scholar 

  57. Chen H, Qi F, Zhou H, Jia S, Gao Y, Koh K, Yin Y (2015) Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection. Sensors Actuators B Chem 212:505–511. doi:10.1016/j.snb.2015.02.062

    Article  CAS  Google Scholar 

  58. Cho M, Hwang SY, Hwang SY, Lee E (2009) Efficient enhancement of surface plasmon resonance signal by using functionalized gold nanoparticles. J Biosci Bioeng 108:S160–S161

    Article  Google Scholar 

  59. Zhang D, Sun Y, Wu Q, Ma P, Zhang H, Wang Y, Song D (2016) Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta 146:364–368. doi:10.1016/j.talanta.2015.08.050

    Article  CAS  Google Scholar 

  60. Fratamico P, Strobaugh T, Medina M, Gehring A (1998) Detection of Escherichia coli 0157: H7 using a surface plasmon resonance biosensor. Biotechnol Tech 12(7):571–576

    Article  CAS  Google Scholar 

  61. Taylor AD, Ladd J, Homola J, Jiang S (2008) Surface plasmon resonance (SPR) sensors for the detection of bacterial pathogens. In: Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, pp 83–108

  62. Oh B-K, Lee W, Lee WH, Choi J-W (2003) Nano-scale probe fabrication using self-assembly technique and application to detection of Escherichia coli O 157∶ H7. Biotechnol Bioprocess Eng 8(4):227–232

    Article  CAS  Google Scholar 

  63. Leonard P, Hearty S, Quinn J, O'Kennedy R (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19(10):1331–1335. doi:10.1016/j.bios.2003.11.009

    Article  CAS  Google Scholar 

  64. Oh BK, Kim YK, Park KW, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens Bioelectron 19(11):1497–1504. doi:10.1016/j.bios.2003.12.009

    Article  CAS  Google Scholar 

  65. Poltronieri P, De Blasi M, D’Urso O (2009) Detection of Listeria monocytogenes through real-time PCR and biosensor methods. Plant Soil Environ 55(9):363–369

    CAS  Google Scholar 

  66. Dudak FC, Boyacı İH (2007) Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Res Int 40(7):803–807. doi:10.1016/j.foodres.2007.01.011

    Article  CAS  Google Scholar 

  67. Waswa J, Debroy C, Irudayaraj J (2006) Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. J Food Process Eng 29(4):373–385

    Article  Google Scholar 

  68. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper has been extracted from Ph.D thesis. The authors would like to acknowledge all the supports of University of Tehran and the financial support of Baqiyatallah University of Medical Sciences (Grant No. 91-1127). The authors also wish to thank Dr. Jan. Castrop, Kinetic Evaluation BV, The Netherlands, for his kind consulting and updating our “kinetic evaluation” software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hossein Rezayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, R.A., Rezayan, A.H., Rahimi, F. et al. Evaluating the Potential of an Antibody Against Recombinant OmpW Antigen in Detection of Vibrio cholerae by Surface Plasmon Resonance (SPR) Biosensor. Plasmonics 12, 1493–1504 (2017). https://doi.org/10.1007/s11468-016-0411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0411-2

Keywords

Navigation