Skip to main content
Log in

One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a new kind of electrochemical immunosensors for simultaneous determination of the biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP). Thionine and ferrocene were applied as distinguishable electrochemical tags (and mediators) which were covalently conjugated on anti-AFP and anti-CEA antibodies, respectively, via carboxy groups. The resulting conjugates were co-immobilized on a glassy carbon electrode functionalized with gold nanoparticles. Finally, horseradish peroxidase (HRP) was immobilized onto the modified electrode. Labeled thionine and ferrocene, respectively, act as distinguishable tags for simultaneous determination of AFP and CEA due to the difference in the location of their voltammetric peaks. With a one-step immunoassay format, the analytes in the sample produced transparent immunoaffinity reaction with the corresponding antibodies on the electrode. Once the immunocomplex is formed, it partially inhibits the active center of the immobilized HRP, and this decreased the activity of HRP in terms of reduction of hydrogen peroxide. This immunosensor enables the simultaneous determination of AFP and CEA in a single run and within the same dynamic range (0.01–50 ng mL−1) and the same lower detection limit (0.01 ng mL−1). The reproducibility and stability of the immunosensors are acceptable. The dual immunosensor was applied to evaluate several specimens, and the assay results are in acceptable agreement with clinical data.

This contribution devises a novel multiplexed electrochemical immunoassay for simultaneous detection of alpha-fetoprotein and carcinoembryonic antigen by using thionine and ferrocene as distinguishable signal tags on a one-spot immunosensor. The assay was performed by using one-step immunoreaction between the immobilized antibodies and the analytes. Although the linear range is relatively narrow, it completely meets the requirement of clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liang M, Yuan R, Chai Y, Min L, Song Z (2011) Double layer enzyme modified carbon nanotubes as label for sandwich-type immunoassay of tumor markers. Microchim Acta 172:373

    Article  CAS  Google Scholar 

  2. Gorodkiewicz E, Charkiewicz R, Rokowsha A, Bajko P, Chyczewski L, Niklinski J (2012) SPR imaging biosensor for podoplanin: sensor development and application to biological materials. Microchim Acta 176:337

    Article  CAS  Google Scholar 

  3. Tainsky M, Chatterjee M, Levin N, Draghici S, Abrams J (2007) Multianalyte tests for the early detection of cancer: speedbumps and barriers. Biomark Insights 2:261

    Google Scholar 

  4. Miller P, Skoog S, Edwards T, Lopez D, Wheeler D, Arango D, Xiao X, Brozik S, Wang J, Polsky R, Narayan R (2012) Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta 88:739

    Article  CAS  Google Scholar 

  5. Han M, Gao X, Su J, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631

    Article  CAS  Google Scholar 

  6. Andolfatto P, Davison D, Erezyilmaz D, Hu T, Mast J, Sunayama-Morita T, Stern D (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610

    Article  CAS  Google Scholar 

  7. Dougan J, Faulds K (2012) Surface enhanced Raman scattering for multiplexed detection. Analyst 137:545

    Article  CAS  Google Scholar 

  8. Morgan C (1966) Immunoassay of human insulin and growth hormone simultaneously using 131I and 125I tracers. Proc Soc Exp Biol Med 123:230

    CAS  Google Scholar 

  9. Wilans F, Dev J, Powell M, Heald J (1986) Evaluation of simultaneous measurement of lutropin and follitropin with the Simul-TROPIN™ radioimmunoassay kit. Clin Chem 32:887

    Google Scholar 

  10. Hemmila I, Holtinen S, Petterson K, Lovgren T (1987) Double-label time-resolved immunofluorometry of lutrpin and follitropin in serum. Clin Chem 33:2281

    CAS  Google Scholar 

  11. Saarma M, Jarvekulg L, Hemmilar I, Siitari H, Sinijarv R (1989) Simultaneous quantification of two plant viruses by double-label time-resolved immunofluorometric assay. J Virol Methods 23:47

    Google Scholar 

  12. Pritchard D, Morgan H, Cooper J (1995) Simultaneous determination of follicle stimulating hormone and luteinizing hormone using a multianalyte immunosensor. Anal Chim Acta 310:251

    Article  CAS  Google Scholar 

  13. Wu J, Yan F, Tang J, Zhai C, Ju H (2007) A disposable multianalyte electrochemical immunosensor array for automated simultaneous determination of tumor markers. Clin Chem 53:1495

    Article  CAS  Google Scholar 

  14. Wutz K, Niessner R, Seidel M (2011) Simultaneous determination of four different antibiotic residues in honey by a chemluminescence multianalyte chip immunoassays. Microchim Acta 173:1

    Article  CAS  Google Scholar 

  15. Liu K, Yuan R, Chai Y, Hong C, Liu K, Guan S (2009) Ultrasensitive amperometric immunosensor for the determination of carcinoembryonic antigen based on a porous chitosan and gold nanoparticles functionalized interface. Microchim Acta 167:217

    Article  CAS  Google Scholar 

  16. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta. doi:10.1007/s00604-011-0758-1

  17. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1

    Article  CAS  Google Scholar 

  18. Wilson M, Nie W (2006) Electrochemical multianalyte immunoassays using an array-based sensor. Anal Chem 78:2507

    Article  CAS  Google Scholar 

  19. Shi M, Peng Y, Zhou J, Liu B, Huang Y, Kong J (2007) Multianalyte immunoassay based on insulating-controllable PoPD film at arrayed electrodes integrated on a silicon chip. Biosens Bioelectron 22:1841

    Article  Google Scholar 

  20. Lumachi F, Marino F, Orlando R, Chiara G, Basso S (2012) Simultaneous multianalyte immunoassay measurement of five serum tumor markers in the detection of colorectal cancer. Anticancer Res 32:985

    CAS  Google Scholar 

  21. Tang D, Yuan R, Chai Y (2007) Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clin Chem 53:1323

    Article  CAS  Google Scholar 

  22. Tang J, Tang D, Niessner R, Chen G, Knopp D (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83:5407

    Article  CAS  Google Scholar 

  23. Zhang Y, Huang L (2012) Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene. Microchim Acta 176:463

    Article  CAS  Google Scholar 

  24. Shi H, Xu Y, Wang Y, Song W (2010) Assembly of ferrocenylhexanethiol functionalized gold nanoparticles for ascorbic acid determination. Microchim Acta 171:81

    Article  CAS  Google Scholar 

  25. Kandimalla V, Tripathi JuH (2006) A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials 27:1167

    Article  CAS  Google Scholar 

  26. Tang D, Yuan R, Chai Y (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem 80:1582

    Article  CAS  Google Scholar 

  27. El-Deab M (2009) On the preferential crystallographic orientation of Au nanoparticles: effect of electrodeposition time. Electrochim Acta 54:3720

    Article  CAS  Google Scholar 

  28. El-Deab M, Sotomura T, Ohsaka T (2004) Size- and crystallographic orientation-controls of gold nanoparticles electrodeposited on glassy carbon electrodes in the presence of cysteine or iodide ions. J Electrochem Soc 151:E213

    Article  CAS  Google Scholar 

  29. Bardea A, Katz E, Willner I (2000) Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product. Electroanalysis 12:1097

    Article  CAS  Google Scholar 

  30. Huang H, Ran P, Liu Z (2007) Impedance sensing of allergen-antibody interaction on glassy carbon electrode modified by gold electrodeposition. Bioelectrochemistry 70:257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the Research Fund for the Doctoral Program of Higher Education of China (no. 20103514120003), the National Science Foundation of Fujian Province (no. 2011J06003), the National Natural Science Foundation of China (nos. 21075019 and 41176079), the “973” National Basic Research Program of China (no. 2010CB732403), and the Program for Changjiang Scholars and Innovative Research Team in University (no. IRT1116) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianping Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, W., Zhuang, J., Tang, J. et al. One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim Acta 178, 357–365 (2012). https://doi.org/10.1007/s00604-012-0839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0839-9

Keywords

Navigation