Skip to main content
Log in

NADH oxidation using modified electrodes based on lactate and glucose dehydrogenase entrapped between an electrocatalyst film and redox catalyst-modified polymers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrocatalytic NADH oxidation was investigated at an electrode architecture involving an electropolymerized layer of poly(methylene blue) (pMB) or poly(methylene green) (pMG) in combination with specifically designed toluidine blue or nile blue modified methacrylate-based electrodeposition polymers. Either NAD+-dependent lactate dehydrogenase or NAD+-dependent glucose dehydrogenase were entrapped between the primary electropolymerized layer of pMB or pMG and the methacrylate-based redox polymer. The composition of the polymer backbone and the polymer-bound redox dye was evaluated and it could be demonstrated that the combination of the electropolymerized pMB or pMG layer together with the dye modified methacrylate-based redox polymer shows superior properties as compared with either of the components alone. NADH was oxidized at an applied potential of 0 mV vs Ag/AgCl/KCl 3 M and current densities of 17 μA·cm−2 and 28 μA·cm−2 were obtained for modified electrodes based on lactate dehydrogenase and glucose dehydrogenase, respectively, at substrate saturation.

Schematic representation of the biosensor architecture based on a bottom layer of electropolymerized poly(methylene blue) (pMB) or poly(methylene green) (pMG) and a dehydrogenase (here LDH) entrapped within a layer of a specifically designed redox dye (here toluidine blue, TB) modified polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bergel A, Souppe J, Comtat M (1989) Enzymatic amplification for spectrophotometric and electrochemical assays of NAD and NADH. Anal Biochem 179:382–388. doi:10.1016/0003-2697(89)90149-8

    Article  CAS  Google Scholar 

  2. Lorenzo E, Pariente F, Hernàndez L, Tobalina F, Darder M, Wu Q, Maskus M, Abruña H (1998) Analytical strategies for amperometric biosensors based on chemically modified electrodes. Biosens Bioelectron 13:319–332. doi:10.1016/S0956-5663(97)00138-3

    Article  CAS  Google Scholar 

  3. Radoi A, Compagnone D (2009) Recent advances in NADH electrochemical sensing design. Bioelectrochemistry 76:126–134. doi:10.1016/j.bioelechem.2009.06.008

    Article  CAS  Google Scholar 

  4. Carlson BW, Miller LL, Neta P, Grodkowski J (1984) Oxidation of NADH involving rate-limiting one-electron transfer. J Am Chem Soc 106:7233–7239. doi:10.1021/ja00335a062

    Article  CAS  Google Scholar 

  5. Deore BA, Freund MS (2005) Reactivity of Poly(anilineboronic acid) with NAD + and NADH. Chem Mater 17:2918–2923. doi:10.1021/cm050647o

    Article  CAS  Google Scholar 

  6. Elving P (1982) NAD/NADH as a model redox system: mechanism, mediation, modification by the environment. Bioelectrochem Bioenerg 9:365–378. doi:10.1016/0302-4598(82)80026-3

    Article  CAS  Google Scholar 

  7. Moiroux J, Elving PJ (1980) Mechanistic aspects of the electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH). J Am Chem Soc 102:6533–6538. doi:10.1021/ja00541a024

    Article  CAS  Google Scholar 

  8. Bard AJ, Stratmann M, Wilson GS (2002) Encyclopedia of electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  9. Kumar SA, Chen S (2008) Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes—a review. Sensors 8:739–766. doi:10.3390/s8020739

    Article  CAS  Google Scholar 

  10. Karyakin AA, Karyakina EE, Schuhmann W, Schmidt H (1999) Electropolymerized azines. Part 2. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 11:553–557. doi:10.1002/(SICI)1521-4109(199906)11:8<553:AID-ELAN553>3.0.CO;2–6

    Article  CAS  Google Scholar 

  11. Huan Z, Persson B, Gorton L, Sahni S, Skotheim T, Barlett P (1996) Redox polymers for electrocatalytic oxidation of NADH—cationic styrene and ethylenimine polymers. Electroanalysis 8:575–581. doi:10.1002/elan.1140080614

    Article  CAS  Google Scholar 

  12. Moore CM, Minteer SD, Martin RS (2005) Microchip-based ethanol/oxygen biofuel cell. Lab Chip 5:218. doi:10.1039/b412719f

    Article  CAS  Google Scholar 

  13. Moore CM, Akers NL, Hill AD, Johnson ZC, Minteer SD (2004) Improving the environment for immobilized dehydrogenase enzymes by modifying nafion with tetraalkylammonium bromides. Biomacromolecules 5:1241–1247. doi:10.1021/bm0345256

    Article  CAS  Google Scholar 

  14. Rajendran V, Csoregi E, Okamoto Y, Gorton L (eds) (1997) Amperometric peroxide sensor based on horseradish peroxidase and touidine blue O-acrylamide redox polymer in carbon paste. Book of Abstracts, 213th ACS National Meeting, San Francisco, April 13–17. American Chemical Society

  15. Pöller S, Beyl Y, Vivekananthan J, Guschin DA, Schuhmann W (2011) A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications. Bioelectrochemistry. doi:10.1016/j.bioelechem.2011.11.015

  16. Guschin DA, Sultanov YM, Sharif-Zade NF, Aliyev EH, Efendiev AA, Schuhmann W (2006) Redox polymer-based reagentless horseradish peroxidase biosensors. Electrochim Acta 51:5137–5142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the EU for financial support in the framework of the project “3D-Nanobiodevice” (NMP4-SL-2009-229255) and to the German Science Foundation (DFG) in the framework of the project DFG - ERA (SCHU 929/10-1). E. A. is grateful for a fellowship provided by the Ministry of Higher Education and Scientific Research in Iraq covering her expenses during her stay in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schuhmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Jawadi, E., Pöller, S., Haddad, R. et al. NADH oxidation using modified electrodes based on lactate and glucose dehydrogenase entrapped between an electrocatalyst film and redox catalyst-modified polymers. Microchim Acta 177, 405–410 (2012). https://doi.org/10.1007/s00604-012-0797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0797-2

Keywords

Navigation