Skip to main content
Log in

ITO electrode modified by a gold ion implantation technique for direct electrocatalytic sensing of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a simple strategy for the fabrication of gold nanoparticles (AuNPs) on an indium tin oxide substrate using a modified ion implantation method. The morphology, structure and electrochemical features of AuNPs were characterized by atomic force microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode has a large electrochemically active surface and enables strong loading with cytochrome c (Cyt c) proteins. It undergoes enhanced electron transfer at uncompromised electrochemical activity, and also displays good stability and repeatability. The immobilized Cyt c exhibits good electrocatalytic activity towards hydrogen peroxide (H2O2), with a linear relationship between the catalytic current during differential pulse voltammetry and the concentration of H2O2 in the 0.05 μM to 0.2 μM range. The detection limit (S/N = 3) is 0.01 μM.

A biosensor for H2O2 was developed by immobilizing cytochrome c on ITO electrode modified by gold ion implantation process. Ion implantation is a new type and an useful simply strategy to attach gold ions on the electrode. The biosensor exhibited a low detection limit, good reproducibility and stability, which indicated that ion-implanted gold nanoparticles could construct enzyme electrode for biosensor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  2. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  3. Kneipp K, Kneipp H, Itzkan I et al (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975

    Article  CAS  Google Scholar 

  4. Hussain I, Graham S, Wang ZX et al (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J Am Chem Soc 127:16398–16399

    Article  CAS  Google Scholar 

  5. Hutchinson OT, Liu YP, Kiely C, Kiely CJ, Brust M (2001) Templated gold nanowire self-assembly on carbon substrates. Adv Mater 13:1800–1803

    Article  CAS  Google Scholar 

  6. Pendry JB (1999) Playing tricks with light. Science 285:1687–1688

    Article  CAS  Google Scholar 

  7. Sedeno PY, Pingarron JM (2005) Gold nanoparticle–based electrochemical biosensors. Anal Bioanal Chem 382:884–886

    Article  Google Scholar 

  8. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619

    Article  CAS  Google Scholar 

  9. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  10. Yi X, Fernando P, Eugenii K, James HF, Itamar W (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  Google Scholar 

  11. Doron A, Katz E, Willner I (1995) Glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11:1313–1317

    Article  CAS  Google Scholar 

  12. Jia J, Wang B, Wu A, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gol network. Anal Chem 74:2217–2223

    Article  CAS  Google Scholar 

  13. Yi X, Xian JH, Yuan CH (2000) Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 278:22–28

    Article  CAS  Google Scholar 

  14. Di J, Peng S, Shen C, Gao Y, Tu Y (2007) One-step method embedding superoxide dismutase and gold nanoparticles in silica sol–gel network in the presence of cysteine for construction of third-generation biosensor. Biosens Bioelectron 23:88–94

    Article  CAS  Google Scholar 

  15. Cui Y, Yang C, Zeng W, Oyama M, Pu W, Zhang J (2007) Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique. Anal Sci 23:1421–1425

    Article  CAS  Google Scholar 

  16. Maduraiveeran G, Ramaraj R (2007) A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol–gel network for concurrent detection of toxic chemicals. Electrochem Commun 9:2051–2055

    Article  CAS  Google Scholar 

  17. Dai X, Wildgoose GG, Salter C, Crossley A, Compton RG (2006) Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Anal Chem 78:6102–6108

    Article  CAS  Google Scholar 

  18. Wang Y, Ma XL, Ying W, Duan GP, Ren W, Zhang ZR, Yang HF (2009) Electrochemistry and electrocatalytic properties of mixed assemblies of horseradish peroxidase, poly(diallyldimethylammonium chloride) and gold nanoparticles on a glassy carbon electrode. Microchim Acta 166:283–288

    Article  CAS  Google Scholar 

  19. Zhang J, Oyama M (2005) Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization: direct electrochemistry and catalysis to hydrogen peroxide. J Electroanal Chem 577:273–279

    Article  CAS  Google Scholar 

  20. Wang Y, Qian K, Guo K, Kong JL, Marty JL, Yu CZ, Liu BH (2011) Electrochemistry and biosensing activity of cytochrome c immobilized in macroporous materials. Microchim Acta 175:87–95

    Article  CAS  Google Scholar 

  21. Oyama M, Orimo A, Nouneh K (2009) Effects of linker molecules on the attachment and growth of gold nanoparticles on indium tin oxide surfaces. Electrochim Acta 54:5042–5047

    Article  CAS  Google Scholar 

  22. Wang J, Wang L, Di J, Tu Y (2009) Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor. Talanta 77:1454–1459

    Article  CAS  Google Scholar 

  23. Praig VG, Piret G, Manesse M, Castel X, Boukherroub R, Szunerits S (2008) Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films. Electrochim Acta 53:7838–7844

    Article  CAS  Google Scholar 

  24. Dai X, Compton RG (2006) Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: application to the detection of arsenic (III). Anal Sci 22:567–570

    Article  CAS  Google Scholar 

  25. Nakamura K, Teranishi Y, Wada Y et al (2009) Surface modification behaviors of glass-like carbon by oxygen ion implantation. Nucl Instrum Meth Res 267:1642–1644

    Article  CAS  Google Scholar 

  26. Shi LW, Wang Q, Li YG, Xue CS, Zhuang HZ (2006) Photoluminescence from C+ ion-implanted and electrochemical etched Si layers. Appl Surf Sci 252:8424–8427

    Article  CAS  Google Scholar 

  27. Wang HY, Gao XY, Duan QL, Lu JX (2005) Variation of surface properties of ZnO films by the implantation of N+ ions. Thin Solid Films 492:236–239

    Article  CAS  Google Scholar 

  28. Muntele CI, Ichou R, Muntele IC, Sarkisov S, Ila D (2007) Surface characterization of silicon carbide following shallow implantation of platinum ions. Surf Coat Technol 201:8339–8342

    Article  CAS  Google Scholar 

  29. Ben AG, Farcau C, Benzo P et al (2012) 3D patterning of Ag nanoparticles by ULE ion implantation and stencil soft lithography for plasmonic device applications. Nucl Instrum Meth B 272:214–217

    Article  Google Scholar 

  30. Giulian R, Kluth P, Johannessen B et al (2007) Synthesis and characterization of ion-implanted Pt nanocrystals in SiO2. Nucl Instrum Meth B 257:33–36

    Article  CAS  Google Scholar 

  31. Carles R, Farcau C, Bonafos C, Benassayag G, Pecassou B, Zwick A (2009) The synthesis of single layers of Ag nanocrystals by ultra-low-energy ion implantation for large-scale plasmonic structures. Nanotechnology 20:355305–355310

    Article  CAS  Google Scholar 

  32. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2005) Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide. Diam Relat Mater 14:2133–2138

    Article  CAS  Google Scholar 

  33. Zhi Y, Hu JB (1998) Study on the voltammetric behavior of metronidazole and its determination at a Co/GC modified electrode. Anal Lett 31:429–435

    Article  Google Scholar 

  34. Zhao M, Hu JB, Lai Y, Li QL (1998) Study of voltammetric behavior of chloramphenicol and its determination at a Ni/C modified electrode. Anal Lett 31:237–249

    Article  Google Scholar 

  35. Mao YN, Hu JB, Li QL (2000) Study of the electrochemical behavior of mitoxantrone and its determination at a Co-C modified ultramicroelectrode. Analyst 125:2299–2302

    Article  CAS  Google Scholar 

  36. Hu JB, Shang J, Li QL (2000) Electrochemical studies of adriamycin interaction with DNA and determination of DNA at Ni/GC ion implantation modified electrode. Anal Lett 33:1843–1855

    Article  CAS  Google Scholar 

  37. Liu CY, Chen QX, Jiao J, Li SQ, Hu JB, Li QL (2011) Surface modification of indium tin oxide films with Au ions implantation: characterization and application in bioelectrochemistry. Surf Coat Technol 205:3639–3643

    Article  CAS  Google Scholar 

  38. Li SQ, Xia J, Liu CY, Cao W, Hu JB, Li QL (2009) Direct electrochemistry of cytochrome c at a novel gold nanoparticles-attached NH +2 ions implantation modified indium tin oxide electrode. J Electroanal Chem 633:273–278

    Article  CAS  Google Scholar 

  39. Yang ZS, Chen X, Liu LP (2009) Direct electrochemical behavior of cytochrome c, and its determination on phytic acid modified electrode. Microchim Acta 165:59–64

    Article  CAS  Google Scholar 

  40. De Wael K, Buschop H, Heering H, De Smet L, Van Beeumen J, Devreese B, Adriaens A (2008) Electrochemical determination of hydrogen peroxide using rhodobacter capsulatus cytochrome c peroxidase at a gold electrode. Microchim Acta 162:65–71

    Article  Google Scholar 

  41. Raoufi D (2010) Fractal analyses of ITO thin films: a study based on power spectral density. Physica B 405:451–455

    Article  CAS  Google Scholar 

  42. Kim EH, Yang CW, Park JW (2010) The crystallinity and mechanical properties of indium tin oxide coating on polymer substrates. J Appl Phys 109:043511

    Article  Google Scholar 

  43. Ding XQ, Yang M, Hu JB, Li QL, McDougall A (2007) Study of the adsorption of cytochrome c on a gold nanoparticle-modified gold electrode by using cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. Microchim Acta 158:65–71

    Article  CAS  Google Scholar 

  44. Li Y, Li J, Xia XH, Liu SQ (2010) Direct electrochemistry of cytochrome c immobilized on a novel macroporous gold film coated with a self–assembled 11-mercaptoundecanoic acid monolayer. Talanta 82:1164–1169

    Article  CAS  Google Scholar 

  45. Liu LJ, Pan HB, Du M, Xie WQ, Wang J (2010) Glassy carbon electrode modified with Nafion-Au colloids for clenbuterol electroanalysis. Electrochim Acta 55:7240–7245

    Article  CAS  Google Scholar 

  46. Li JH, Dong SJ (1997) The electrochemical study of oxidation-reduction properties of horseradish peroxidase. J Electroanal Chem 431:19–22

    Article  CAS  Google Scholar 

  47. Song J, Xu JM, Zhao PS, Lu LD, Bao JC (2011) A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. Microchim Acta 172:117–123

    Article  CAS  Google Scholar 

  48. Zhao GH, Lei YZ, Zhang YG, Li HX, Liu MC (2008) Growth and favorable bioelectrocatalysis of multishaped nanocrystal Au in vertically aligned TiO2 nanotubes for hemoprotein. J Phys Chem C 112:14786–14795

    Article  CAS  Google Scholar 

  49. Liu HH, Lu JL, Zhang M, Pang DW, Abrun HD (2003) Direct electrochemistry of cytochrome c surface-confined on DNA-modified gold electrode. J Electroanal Chem 544:93–100

    Article  CAS  Google Scholar 

  50. Laviron E (1975) A critical study of the factors causing the appearance of Brdička’s adsorption currents: influence of the interactions between the adsorbed molecules. J Electroanal Chem Interface 63:245–261

    Article  CAS  Google Scholar 

  51. Ju H, Liu S, Ge B, Lisdat F, Scheller FW (2002) Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanalysis 14:141–147

    Article  CAS  Google Scholar 

  52. Dai Z, Liu S, Ju H (2004) Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing. Electrochim Acta 49:2139–2144

    Article  CAS  Google Scholar 

  53. Brown KR, Fox AP, Natan MJ (1996) Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J Am Chem Soc 118:1154–1157

    Article  CAS  Google Scholar 

  54. Lei CH, Lisdat F, Wollenberger U, Scheller FW (1999) Cytochrome c/clay-modified electrode. Electroanalysis 11:274–276

    Article  CAS  Google Scholar 

  55. Luo YP, Tian Y, Zhu AW, Liu HQ, Zhou JQ (2010) PH-dependent electrochemical behavior of proteins with different isoelectric points on the nanostructured TiO2 surface. J Electroanal Chem 642:109–114

    Article  CAS  Google Scholar 

  56. Zhu L, Wang KQ, Lu TH, Xing W, Li J, Yang XG (2008) The direct electrochemistry behavior of Cyt c on the modified glassy carbon electrode by SBA-15 with a high-redox potential. J Mol Catal B-Enzym 55:93–98

    Article  CAS  Google Scholar 

  57. Zhu AW, Tian Y, Liu HQ, Luo YP (2009) Nanoporous gold film encapsulating cytochrome c for the fabrication of a H2O2 biosensor. Biomaterials 30:3183–3188

    Article  CAS  Google Scholar 

  58. Zhang XA, Wang JF, Wu WJ, Qian SW, Man YH (2007) Immobilization and electrochemistry of cytochrome c on amino-functionalized mesoporous silica thin films. Electrochem Commun 9:2098–2104

    Article  CAS  Google Scholar 

  59. Yin HS, Ai SY, Shi WJ, Zhu LS (2009) A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensor Actuator B Chem 137:747–753

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude and appreciation for the financial support from the National Natural Science Foundation of China (No.20211130505) and the Key Laboratory of Beam Technology and Material Modification of Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, F., Liu, C., Jiao, J. et al. ITO electrode modified by a gold ion implantation technique for direct electrocatalytic sensing of hydrogen peroxide. Microchim Acta 177, 389–395 (2012). https://doi.org/10.1007/s00604-012-0792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0792-7

Keywords

Navigation