Skip to main content
Log in

Fluorescent detection of silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel method for the determination of silver ion (Ag+) and cysteine (Cys) by using the probe SYBR Green I (SGI) and an Ag+-specific cytosine-rich oligonucleotide (C-DNA). The fluorescence of SGI is very weak in the absence or presence of randomly coiled C-DNA. If, however, C-DNA interacts with Ag+ through the formation of cytosine-Ag+-cytosine (C-Ag+-C) base pairs, the randomly coiled C-DNA undergoes a structural changes to form a hairpin-like structure, thereby increasing the fluorescence of SGI. This fluorescence turn-on process allows the detection of Ag+ in the 10–600 nM concentration range, with a detection limit of 4.3 nM. Upon the reaction of Ag+ with Cys, Cys specifically removes Ag+ from the C-Ag+-C base pairs and destroys the hairpin-like structure. This, in turn, results in a decrease in fluorescence intensity. This fluorescence turn-off process enables the determination of Cys in the 8–550 nM concentration range, with a detection limit of 4.5 nM. The method reported here for the determination of either Ag+ or Cys is simple, sensitive, and affordable, and may be applied to other detection systems if appropriately selected DNA sequences are available.

Sencitive and selective detection of Ag+ and cysteine based on fluorescence change of SYBR Green I

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang HQ, Feng HJ, Zheng JH, Zhao J (2007) A study on antibacterial properties of Ag+ -implanted pyrolytic carbon. Surf Coat Technol 201:5633–5636

    Article  CAS  Google Scholar 

  2. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: A review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  3. Wu C, Xiong C, Wang L, Lan C, Ling L (2010) Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Analyst 135:2682–2687

    Article  CAS  Google Scholar 

  4. Li Z, Zhou L, Tan F (2007) Influence of sample pre-treatment on the determination of trace silver and cadmium in geological and environmental samples by quadrupole inductively coupled plasma mass spectrometry. Microchim Acta 156:263–269

    Article  Google Scholar 

  5. Singh RP, Pambid ER (1990) Selective separation of silver from waste solutions on chromium (III) hexacyanoferrate (III) ion exchanger. Analyst 115:301–304

    Article  CAS  Google Scholar 

  6. Manzoori JL, Abdolmohammad-Zadeh H, Amjadi M (2007) Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology. J Hazard Mater 144:458–463

    Article  CAS  Google Scholar 

  7. Li YH, Xie HQ, Zhou FQ (2005) Alizarin violet modified carbon paste electrode for the determination of trace silver (I) by adsorptive voltammetry. Talanta 67:28–33

    Article  CAS  Google Scholar 

  8. Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles. Anal Chem 82:6830–6837

    Article  CAS  Google Scholar 

  9. Zheng A, Chen J, Li H, He C, Wu G, Zhang Y, Wei H, Wu G (2009) Highly sensitive fluorescence determination of silver ions based on functionalized cadmium telluride nanorods. Microchim Acta 165:187–194

    Article  CAS  Google Scholar 

  10. Zhang BH, Qi L, Wu FY (2010) Functionalized manganese-doped zinc sulfide core/shell quantum dots as selective fluorescent chemodosimeters for silver ion. Microchim Acta 170:147–153

    Article  CAS  Google Scholar 

  11. Gattás-Asfura KM., Leblanc RM (2003) Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I). Chem Commun 2684–2685.

  12. Nikiforova V, Kempa S, Zeh M, Maimann S, Kreft O, Casazza AP, Riedel K, Tauberger E, Hoefgen R, Hesse H (2002) Engineering of cysteine and methionine biosynthesis in potato. Amino Acids 22:259–278

    Article  CAS  Google Scholar 

  13. Gazit V, Ben-Abraham R, Coleman R, Weizman A, Katz Y (2004) Cysteine- induced hypoglycemic brain damage: an alternative mechanism to excitotoxicity. Amino Acids 26:163–168

    Article  CAS  Google Scholar 

  14. Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C (2007) A Highly Selective Fluorescence Turn-on Sensor for Cysteine/ Homocysteine and Its Application in Bioimaging. J Am Chem Soc 129:10322–10323

    Article  CAS  Google Scholar 

  15. Shahrokhian S (2001) Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Anal Chem 73:5972–5978

    Article  CAS  Google Scholar 

  16. Shang L, Dong S (2009) Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron 24:1569–1573

    Article  CAS  Google Scholar 

  17. Tcherkas YV, Denisenko AD (2001) Simultaneous determination of several amino acids, including homocysteine, cysteine and glutamic acid, in human plasma by isocratic reversed-phase high-performance liquid chromatography with fluorimetric detection. J Chromatogr A 913:309–313

    Article  CAS  Google Scholar 

  18. Freeman R, Finder T, Willner I (2009) Multiplexed Analysis of Hg2+ and Ag+ Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations. Angew Chem Int Ed 48:7818–7821

    Article  CAS  Google Scholar 

  19. Guo L, Hu H, Sun R, Chen G (2009) Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and π-stacked T–Hg(II)–T base pairs. Talanta 79:775–779

    Article  CAS  Google Scholar 

  20. Watanabe Y, Minowa T, Ono A (2004) Metal ion binding of substituted pyrimidine base pairs in DNA duplexes. Nucleic Acids Symp Ser 48:85–86

    Article  Google Scholar 

  21. Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene- based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46:2596–2598

    Article  CAS  Google Scholar 

  22. Kong DM, Cai LL, Shen HX (2010) Quantitative detection of Ag+ and cysteine using G-quadruplex–hemin DNAzymes. Analyst 135:1253–1258

    Article  CAS  Google Scholar 

  23. Guo JH, Kong DM, Shen HX (2010) Design of a fluorescent DNA IMPLICATION logic gate and detection of Ag+ and cysteine with triphenylmethane dye/G-quadruplex complexes. Biosens Bioelectron 26:327–332

    Article  CAS  Google Scholar 

  24. Li T, Shi L, Wang E, Dong S (2009) Silver-Ion-Mediated DNAzyme Switch for the Ultrasensitive and Selective Colorimetric Detection of Aqueous Ag+ and Cysteine. Chem Eur J 15:3347–3350

    Article  CAS  Google Scholar 

  25. Zhou XH, Kong DM, Shen HX (2010) Ag+ and Cysteine Quantitation Based on G-Quadruplex-Hemin DNAzymes Disruption by Ag+. Anal Chem 82:789–793

    Article  CAS  Google Scholar 

  26. Lin YH, Tseng WL, (2009) Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe. Chem Commun 6619–6621.

  27. Liu B (2008) Highly sensitive oligonucleotide-based fluorometric detection of mercury (II) in aqueous media. Biosens Bioelectron 24:756–760

    Article  CAS  Google Scholar 

  28. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:e103

    Article  Google Scholar 

  29. Kumart CV, Turner RS, Asuncion EH (1993) Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J Photochem Photobiol A: Chem 74:231–238

    Article  Google Scholar 

  30. Komaba S, Fujino Y, Matsuda T, Osaka T, Satoh I (1998) Biological Determination of Ag(I) Ion and Arginine by Using the Composite Film of Electroinactive Polypyrrole and Polyion Complex. Sensors and Actuators B: Chemical 52:78–83

    Article  Google Scholar 

  31. Feng DQ, Liu G, Zheng W, Liu J, Chen T, Li D (2011) A highly selective and sensitive on–off sensor for silver ions and cysteine by light scattering technique of DNA- functionalized gold nanoparticles. Chem Commun 47:8557–8559

    Article  CAS  Google Scholar 

  32. Gong H, Li X (2011) Y-type, C-rich DNA probe for electrochemical detection of silver ion and cysteine. Analyst 136:2242–2246

    Article  CAS  Google Scholar 

  33. Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X (2010) A Reusable DNA Single-Walled Carbon-Nanotube-Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Ag+ and Cysteine in Aqueous Solutions. Chem Eur J 16:8147–8154

    CAS  Google Scholar 

  34. Zhang M, Yin BC, Tan W, Ye BC (2011) A Versatile Graphene-Based Fluorescence “On/Off” Switch for Multiplex Detection of Various Targets. Biosens Bioelectron 26:3260–3265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing Natural Science Foundation (CSTC, 2007BB0049) and the National Natural Science Foundation Committee of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawen Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, W., Zhao, H., Huang, C. et al. Fluorescent detection of silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide. Microchim Acta 177, 137–144 (2012). https://doi.org/10.1007/s00604-012-0763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0763-z

Keywords

Navigation