Skip to main content
Log in

Biotinylation of quantum dots for application in fluoroimmunoassays with biotin-avidin amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A competitive microplate fluoroimmunoassay was developed for the determination of human serum albumin in urine. It is based on the use of biotinylated CdTe quantum dots (QDs) whose synthesis is optimised in terms of storage stability, purification, and signal-to-noise ratio. The bioconjugated QDs were characterised by gel chromatography and gel electrophoresis. Storage stability and quantum yield were investigated. The excitation/emission wavelengths are 360/620 nm. The immunoassay of human serum albumin in urine has a working range from 1.7 to 10 μg.mL−1, and the limit of detection is 1.0 μg.mL−1.

Preparation of biotinylated quantum dots is described. Their structure consists of biotinylated denatured bovine serum albumin attached to the quantum dot surface. Fluoroimmunoassay for human serum albumin was developed utilizing thus prepared bioconjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  3. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  4. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  5. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76:684–688

    Article  CAS  Google Scholar 

  6. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech 13:40–46

    Article  CAS  Google Scholar 

  7. Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 75:215–221

    CAS  Google Scholar 

  8. Wang GL, Xu JJ, Chen HY, Fu SZ (2009) Label-free photoelectrochemical immunoassay for alpha-fetoprotein detection based on TiO2/CdS hybrid. Biosens Bioelectron 25:791–796

    Article  CAS  Google Scholar 

  9. Willner I, Patolsky F, Wasserman J (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem Int Ed 40:1861–1864

    Article  CAS  Google Scholar 

  10. Miao T, Wang Z, Li S, Wang X (2011) Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta 172:431–437

    Article  CAS  Google Scholar 

  11. Zhou X, Meng Y, Ma H, Tao G (2011) Method for determination of microcystin-leucine-arginine in water samples based on the quenching of the fluorescence of bioconjugates between CdSe/CdS quantum dots and microcystin-leucine-arginine antibody. Microchim Acta 173:259–266

    Article  CAS  Google Scholar 

  12. Li X, Wang R, Zhang X (2011) Electrochemiluminescence immunoassay at a nanoporous gold leaf electrode and using CdTe quantun dots as labels. Microchim Acta 172:285–290

    Article  CAS  Google Scholar 

  13. Zhang BH, Qi L, Wu FY (2010) Functionalized manganese-doped zinc sulfide core/shell quantum dots as selective fluorescent chemodosimeters for silver ion. Microchim Acta 170:147–153

    Article  CAS  Google Scholar 

  14. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22

    Article  CAS  Google Scholar 

  15. Wu H, Liang J, Han H (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81–86

    Article  CAS  Google Scholar 

  16. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, London

    Google Scholar 

  17. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  18. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  Google Scholar 

  19. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O'Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165

    Article  CAS  Google Scholar 

  20. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  Google Scholar 

  21. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  Google Scholar 

  22. Clapp AR, Goldman ER, Mattoussi H (2006) Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat Protoc 1:1258–1266

    Article  CAS  Google Scholar 

  23. Prasuhn DE, Deschamps JR, Susumu K, Stewart MH, Boeneman K, Blanco-Canosa JB, Dawson PE, Medintz IL (2010) Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: Predicted versus experimental results. Small 6:555–564

    Article  CAS  Google Scholar 

  24. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Andersont GP (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378–6382

    Article  CAS  Google Scholar 

  25. Tan WB, Huang N, Zhang Y (2007) Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. J Colloid Interface Sci 310:464–470

    Article  CAS  Google Scholar 

  26. Wang Y, Chen H, Ye C, Hu Y (2008) Synthesis and characterization of CdTe quantum dots embedded gelatin nanoparticles via a two-step desolvation method. Mater Lett 62:3382–3384

    Article  CAS  Google Scholar 

  27. Dixit SK, Goicochea NL, Daniel MC, Murali A, Bronstein L, De M, Stein B, Rotello VM, Kao CC, Dragnea B (2006) Quantum dot encapsulation in viral capsids. Nano Lett 6:1993–1999

    Article  CAS  Google Scholar 

  28. Turyanska L, Bradshaw TD, Sharpe J, Li M, Mann S, Thomas NR, Patanè A (2009) The biocompatibility of apoferritin-encapsulated PbS quantum dots. Small 5:1738–1741

    Article  CAS  Google Scholar 

  29. Wang Q, Kuo Y, Wang Y, Shin G, Ruengruglikit C, Huang Q (2006) Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots. J Phys Chem B 110:16860–16866

    Article  CAS  Google Scholar 

  30. Demas JN, Crosby GA (1971) Measurement of photoluminescence quantum yields - review. J Phys Chem 75:991–1024

    Article  Google Scholar 

  31. Little JA (2004) Comparison of curve fitting models for ligand binding assays. Chromatographia 59:s177–s181

    Article  CAS  Google Scholar 

  32. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmüller A, Rakovich YP, Donegan JF (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J Phys Chem C 111:14628–14637

    Article  CAS  Google Scholar 

  33. Doumas BT, Peters T Jr (1997) Serum and urine albumin: a progress report on their measurement and clinical significance. Clin Chim Acta 258:3–20

    Article  CAS  Google Scholar 

  34. Zhao L, Lin J-M, Li Z (2005) Comparison and development of two different solid phase chemiluminescence ELISA for the determination of albumin in urine. Anal Chim Acta 541:199–207

    Article  CAS  Google Scholar 

  35. Teppo AM (1982) Immunoturbidimetry of albumin and immunoglobulin G in urine. Clin Chem 28:1359–1361

    CAS  Google Scholar 

  36. Kessler MA, Meinitzer A, Peter W, Wolfbeis OS (1997) Microalbuminuria and borderline-increased albumin excretion determined with a centrifugal analyzer and the Albumin Blue 580 fluorescence assay. Clin Chem 43:996–1002

    CAS  Google Scholar 

  37. Kessler MA, Meinitzer A, Wolfbeis OS (1997) Albumin blue 580 fluorescence assay for albumin. Anal Biochem 248:180–182

    Article  CAS  Google Scholar 

  38. Silver A, Dawnay A, Landon J, Cattell WR (1986) Immunoassays for low concentrations of albumin in urine. Clin Chem 32:1303–1306

    CAS  Google Scholar 

  39. Qin QP, Peltola O, Pettersson K (2003) Time-resolved fluorescence resonance energy transfer assay for point-of-care testing of urinary albumin. Clin Chem 49:1105–1113

    Article  CAS  Google Scholar 

  40. Lievens MM, Ketelslegers JM, Loots F, Eyndels C (1988) Immunonephelometric method evaluated for determining low concentrations of albumin in urine. Clin Chem 34:992–993

    CAS  Google Scholar 

  41. Marshall SM, Shearing PA, Alberti KGMM (1992) Micral-Test strips evaluated for screening for albuminuria. Clin Chem 38:588–591

    CAS  Google Scholar 

  42. Xia T, Wang L, Bian G, Dong L, Hong S (2006) Synchronous fluorescence determination of protein with functional organic nanoparticles. Microchim Acta 154:309–314

    Article  CAS  Google Scholar 

  43. He Y, Li Y, Hun X (2010) Polymer nanoparticles as fluorescent labels in a fluoroimmunoassay for human chorionic gonadotropin. Microchim Acta 171:393–398

    Article  CAS  Google Scholar 

  44. Wang L, Zhao W, O'Donoghue MB, Tan W (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjugate Chem 18:297–301

    Article  CAS  Google Scholar 

  45. Wolfbeis OS, Leiner M (1985) Mapping of the total fluorescence of human blood serum as a new method for its characterization. Anal Chim Acta 167:203–215

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledged Dipl. Ing. Alois Tichý and Dr. Karel Kouřil (Clinical Laboratory of Blansko Hospital) for providing the analysis of urine samples and their general help. The research was supported by the Ministry of Education of Czech Republic under the projects “Biomolecular Centre” (LC06030) and “Proteins in metabolism and interaction of organisms with the environment” (MSM0021622413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Skládal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Additional figures and detailed description of used methods. (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hlavacek, A., Bouchal, P. & Skládal, P. Biotinylation of quantum dots for application in fluoroimmunoassays with biotin-avidin amplification. Microchim Acta 176, 287–293 (2012). https://doi.org/10.1007/s00604-011-0729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0729-6

Keywords

Navigation