Skip to main content
Log in

SPR imaging biosensor for podoplanin: sensor development and application to biological materials

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Podoplanin (PDP) is a small transmembrane protein and widely present in various specialized cells throughout the human body. It is a specific marker for identification of lymphatic vessel and a candidate marker for cancer stem cells in squamous cell carcinoma of the lung. We report on method for the highly selective determination of PDP by using a surface plasmon resonance imaging (SPRI) that exploits the highly selective interaction between PDP and anti-human PDP monoclonal antibody (IgG). The sensor has a dynamic range between 0.25 and 1.0 ng mL−1, and a detection limit of 15 pg mL−1. It was applied to the determination of PDP in blood plasma and tissue homogenates from paired normal and lung tumor tissue.

A novel method for the highly selective determination of podoplanin by using a Surface Plasmon Resonance Imaging (SPRI) technique has been developed. For sensor development, highly selective interaction between podoplanin and anti-human podoplanin monoclonal antibody (IgG) was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martín-Villar E, Scholl FG, Gamallo C, Yurrita MM, Muñoz-Guerra M, Cruces J, Quintanilla M (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 113(6):899–910

    Article  Google Scholar 

  2. Zimmer G, Oeffner F, Von Messling V, Tschernig T, Gröness HJ, Klenk HD, Herrler G (1999) Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium. Biochem J 341(Pt 2):277–284

    Article  CAS  Google Scholar 

  3. Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, Schaffner G, Kerjaschki D (1997) Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 151(4):1141–1152

    CAS  Google Scholar 

  4. Wang Y, Sun J, Gu Y, Zhao S, Groome LJ, Alexander JS (2011) D2-40/podoplanin expression in the human placenta. Placenta 32(1):27–32

    Article  CAS  Google Scholar 

  5. Rishi AK, Joyce-Brady M, Fisher J, Dobbs LG, Floros J, VanderSpek J, Brody JS, Williams MC (1995) Cloning, characterization, and development expression of a rat lung alveolar type I cell gene in embryonic endodermal and neural derivatives. Dev Biol 167(1):294–306

    Article  CAS  Google Scholar 

  6. Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394

    Article  CAS  Google Scholar 

  7. Boucherot A, Schreiber R, Pavenstädt H, Kunzelmann K (2002) Cloning and expression of the mouse glomerular podoplanin homologue gp38P. Nephrol Dial Transplant 17(6):978–984

    Article  CAS  Google Scholar 

  8. Ordonez NG (2006) Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol 13:83–88

    Article  CAS  Google Scholar 

  9. Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M (2005) Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166:913–921

    Article  CAS  Google Scholar 

  10. Birner P, Obermair A, Schindl M, Kowalski H, Breitenecker G, Oberhuber G (2001) Selective immunohistochemical staining of blood and lymphatic vessels reveals independent prognostic influence of blood and lymphatic vessel invasion in early-stage cervical cancer. Clin Cancer Res 7(1):93–97

    CAS  Google Scholar 

  11. Kimura N, Kimura I (2005) Podoplanin as a marker for mesothelioma. Pathol Int 55:83–86

    Article  CAS  Google Scholar 

  12. Idrees M, Saxena R, Cheng L, Ulbright TM, Badve S (2010) Podoplanin, a novel marker for seminoma: a comparison study evaluating immunohistochemical expression of podoplanin and OCT3/4. Ann Diagn Pathol 14(5):331–336

    Article  Google Scholar 

  13. Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T, Osawa M (2005) Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregationinducing factor in lung squamous cell carcinoma. Tumour Biol 26:195–200

    Article  CAS  Google Scholar 

  14. Chuang WY, Yeh CJ, Wu YC, Chao YK, Liu YH, Tseng CK, Chang HK, Liu HP, Hsueh C (2009) Tumor cell expression of podoplanin correlates with nodal metastasis in esophageal squamous cell carcinoma. Histol Histopathol 24(8):1021–1027

    CAS  Google Scholar 

  15. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272

    Article  CAS  Google Scholar 

  16. Navarro A, Perez RE, Rezaiekhaligh M, Mabry SM, Ekekezie II (2008) T1alpha/podoplanin is essential for capillary morphogenesis in lymphatic endothelial cells. Am J Physiol Lung Cell Mol Physiol 295(4):L543–L551

    Article  CAS  Google Scholar 

  17. Kunita A, Kashima TG, Morishita Y, Fukayama M, Kato Y, Tsuruo T, Fujita N (2007) The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. Am J Pathol 170(4):1337–1347

    Article  CAS  Google Scholar 

  18. Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC (2003) T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol Apr 1256(1):61–72

    Google Scholar 

  19. Gandarillas A, Scholl FG, Benito N, Gamallo CM (1997) Quintanilla Induction of PA2.26, a cell-surface antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis. Mol Carcinog 20:10–18

    Article  CAS  Google Scholar 

  20. Shimada Y, Ishii G, Nagai K, Atsumi N, Fujii S, Yamada A, Yamane Y, Hishida T, Nishimura M, Yoshida J, Ikeda N, Ochiai A (2009) Expression of podoplanin, CD44, and p63 in squamous cell carcinoma of the lung. Cancer Sci 100(11):2054–2059

    Article  CAS  Google Scholar 

  21. Ekwall AK, Eisler T, Anderberg C, Jin C, Karlsson N, Brisslert M, Bokarewa MI (2011) The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res Ther 13(2):R40

    Article  CAS  Google Scholar 

  22. Chaipan C, Steffen I, Tsegaye TS, Bertram S, Glowacka I, Kato Y, Schmökel J, Münch J, Simmons G, Gerardy-Schahn R, Pöhlmann S (2010) Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology 7:47

    Article  Google Scholar 

  23. Kato Y, Kaneko MK, Kuno A, Uchiyama N, Amano K, Chiba Y, Hasegawa Y, Hirabayashi J, Narimatsu H, Mishima K, Osawa M (2006) Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 349(4):1301–1307

    Article  CAS  Google Scholar 

  24. Fernández-González A, Rychlowska J, Badía R, Salzer R (2007) SPR imaging as a tool for detecting mucin—anti-mucin interaction. Outline of the development of a sensor for near-patient testing for mucin. Microchim Acta 158:219–225

    Article  Google Scholar 

  25. Lee HJ, Nedelkov D, Corn RM (2006) Surface Plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem 78:6504–6510

    Article  CAS  Google Scholar 

  26. Gorodkiewicz E (2007) The surface Plasmon resonance imaging sensor for papain based on immobilized cystatin. Protein Pept Lett 14:443–445

    Article  CAS  Google Scholar 

  27. Gorodkiewicz E (2009) Surface Plasmon resonance imaging sensor for cathepsin determination based on immobilized cystatin. Protein Pept Lett 16:1379–1385

    Article  CAS  Google Scholar 

  28. Gorodkiewicz E, Regulska E, Roszkowska-Jakimiec W (2010) Determination of the active form concentration of cathepsins D and B by SPRI biosensors. J Lab Diagn 46:107–109

    CAS  Google Scholar 

  29. Gorodkiewicz E, Regulska E (2010) SPR imaging biosensor for aspartyl cathepsins: sensor development and application for biological material. Protein Pept Let 17:1148–1154

    Article  CAS  Google Scholar 

  30. Gorodkiewicz E, Regulska E, Wojtulewski K (2011) Development of an SPR imaging biosensor for determination of cathepsin G in saliva and white blood cells. Microchim Acta 173:407–413

    Article  CAS  Google Scholar 

  31. Ozaki Y, Suzuki-Inoue K, Inoue O (2009) Novel interactions in platelet biology: CLEC-2/podoplanin and laminin/GPVI. J Thromb Haemost 7(1):191–194

    Article  CAS  Google Scholar 

  32. http://www.rndsystems.com/pdf/AF3670.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Gorodkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorodkiewicz, E., Charkiewicz, R., Rakowska, A. et al. SPR imaging biosensor for podoplanin: sensor development and application to biological materials. Microchim Acta 176, 337–343 (2012). https://doi.org/10.1007/s00604-011-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0726-9

Keywords

Navigation