Skip to main content
Log in

Multilayer structured immunosensor based on a glassy carbon electrode modified with multi-wall carbon nanotubes, polythionine, and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An immunosensor for determination of salbutamol was developed. It based on glass carbon electrode (GCE) modified with a conductive multilayer film comprised of multi-wall carbon nanotubes, polythionine and gold nanoparticles. Salbutamol antibody was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin (BSA). The stepwise self-assembly process of the immunosensor was studied by cyclic voltammetry. The detection scheme is based on competitive binding of salbutamol to the sensor surface whose differential pulse voltammetric signal decreases after competitive binding of the salbutamol-BSA conjugate and free salbutamol to the salbutamol antibody. The sensor responds to salbutamol in 5 to 150 nM concentration range, with a detection limit of 1 nM. This method was applied to the precise and sensitive determination of salbutamol in spiked feed samples.

In this work, we constructed a salbutamol immunosensor which was based on salbutamol-Ab adsorbed on the AuNPs/PTH/MWCNTs/GCE. Just as the procedures shown in Graph 1, competitive immunoreaction was the experimental principle. The percentage of current response of the immunosensor was proportional to salbutamol concentrations in the range of 5–150 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Templeton AGB, Chapman ID, Chilvers ER, Morley J, Handley DA (1998) Effects of s-salbutamol on human isolated bronchus. Pulm Pharmacol Ther 11:1

    Article  CAS  Google Scholar 

  2. Roberts JA, Bradding P, Britten KM, Walls AF, Wilson S, Gratziou C, Holgate ST, Howarth PH (1999) The long-acting β2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur Respir J 14:275

    Article  CAS  Google Scholar 

  3. Garssen GJ, Geesink GH, Hoving-Bolink AH, Verplanke JC (1995) Effects of dietary clenbuterol and salbutamol on meat quality in veal calves. Meat Sci 40:337

    Article  CAS  Google Scholar 

  4. Avendaño-Reyes L, Torres-Rodríguez V, Meraz-Murillo FJ, Pérez-Linares C, Figueroa-Saavedra F, Robinson PH (2006) Effects of two β-adrenergic agonists on finishing performance, carcass characteristics, and meat quality of feedlot steers. J Anim Sci 84:3259

    Article  Google Scholar 

  5. Sota E, Barrio ASD, Garcia-Calonge MA, Portillo MP, Astiasarhn I, Martinez JA (1995) Organ weights, muscle composition and fatty acid profiles in lambs fed salbutamol: effect of a 5-day withdrawal period. Meat Sci 41:29

    Article  CAS  Google Scholar 

  6. Brambilla G, Cenci T, Franconi F, Galarini R, Macrì A, Rondoni F, Strozzi M, Loizzo A (2000) Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett 114:47

    Article  CAS  Google Scholar 

  7. EEC (1996) Directive 96/22. Off J Commun L 125:3

    Google Scholar 

  8. Kuiper HA, Noordam MY, Dooren-Flipsen MMV, Schilt R, Roos AH (1998) Illegal use of beta-adrenergic agonists: European community. J Anim Sci 76:195

    CAS  Google Scholar 

  9. Mitchell GA, Dunnavan G (1998) Illegal use of β-adrenergic agonists in the United States. J Anim Sci 76:208

    CAS  Google Scholar 

  10. Zhang YT, Zhang ZJ, Sun YH, Wei Y (2007) Development of an analytical method for the determination of β2-agonist residues in animal tissues by high-performance liquid chromatography with on-line electrogenerated [Cu(HIO6)2]5–luminol chemiluminescence detection. J Agric Food Chem 55:4949

    Article  CAS  Google Scholar 

  11. Yudthavorasit S, Chiaochan C, Leepipatpiboon N (2010) Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry. Microchim Acta. doi:10.1007/s00604-010-0454-6

    Google Scholar 

  12. Ganjali MR, Sepehri A, Daftari A, Norouzi P, Pirelahi H, Moradzadegan A (2005) Determination of salbutamol, amikacin and paromomycin sulfate by a novel sulfate polymeric membrane sensor based on 2, 6-diphenyl 4-(4-methoxyphenyl) pyrylium perchlorate. Microchim Acta 149:245

    Article  CAS  Google Scholar 

  13. Sheu SY, Lei YC, Tai YT, Chang TH, Kuo TF (2009) Screening of salbutamol residues in swine meat and animal feed by an enzyme immunoassay in Taiwan. Anal Chim Acta 654:148

    Article  CAS  Google Scholar 

  14. Micheli L, Radoi A, Guarrina R, Massaud R, Bala C, Moscone D, Palleschi G (2004) Disposable immunosensor for the determination of domoic acid in shellfish. Biosens Bioelectron 20:190

    Article  CAS  Google Scholar 

  15. Pellegrini GE, Carpico G, Coni E (2004) Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. Anal Chim Acta 520:13

    Article  CAS  Google Scholar 

  16. Romanazzo D, Ricci F, Volpe G, Elliott CT, Vesco S, Kroeger K, Moscone D, Stroka J, Egmond HV, Vehniäinen M, Palleschi G (2010) Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosens Bioelectron 25:2615

    Article  CAS  Google Scholar 

  17. Owino JHO, Arotiba OA, Hendricks N, Songa EA, Jahed N, Waryo TT, Ngece RF, Baker PGL, Iwuoha EI (2008) Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors Basel 8:8262–8274

    CAS  Google Scholar 

  18. Lin JH, He CY, Zhang LJ, Zhang SS (2009) Sensitive amperometric immunosensor for α-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal Biochem 384:130

    Article  CAS  Google Scholar 

  19. Liu GD, Wang J, Barry R, Petersen C, Timchalk C, Gassman PL, Lin YH (2008) Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chem Eur J 14:9951

    Article  CAS  Google Scholar 

  20. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  21. Zhang MN, Su L, Mao LQ (2006) Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon 44:276

    Article  CAS  Google Scholar 

  22. Tang H, Chen JH, Yao SZ, Nie LH, Deng GH, Kuang YF (2004) Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal Biochem 331:89

    CAS  Google Scholar 

  23. Liu LQ, Wang TX, Li JX, Guo ZX, Dai LM, Zhang DQ, Zhu DB (2003) Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett 367:747

    Article  CAS  Google Scholar 

  24. Zhang RY, Wang XM (2007) One step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response. Chem Mater 19:976

    Article  CAS  Google Scholar 

  25. Tanaka K, Ikeda S, Oyama N, Tokuda K, Ohsaka T (1993) Preparation of poly(thionine)-modified electrode and its application to an electrochemical detector for flow-injection analysis of NADH. Anal Sci 9:783

    Article  CAS  Google Scholar 

  26. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199

    Article  CAS  Google Scholar 

  27. Miao YQ, Wang H, Shao YY, Tang ZW, Wang J, Lin YH (2009) Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2. Sensor Actuat B Chem 138:182

    Article  Google Scholar 

  28. Su HL, Yuan R, Chai YQ, Zhuo Y, Hong CL, Liu ZY, Yang X (2009) Multilayer structured amperometric immunosensor built by self-assembly of a redox multi-wall carbon nanotube composite. Electrochim Acta 54:4149

    Article  CAS  Google Scholar 

  29. Huo HY, Luo HQ, Li NB (2009) Electrochemical sensor for heparin based on a poly(thionine) modified glassy carbon electrode. Microchim Acta 167:195

    Article  CAS  Google Scholar 

  30. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  31. Remick AE (1936) The reduction potentials of organic systems. I. the dimolecular reduction of thioindigo disulfonate. J Am Chem Soc 58:733

    Article  CAS  Google Scholar 

  32. Ruan CM, Yang R, Chen XH, Deng JQ (1998) A reagentless amperometric hydrogen peroxide biosensor based on covalently binding horseradish peroxidase and thionine using a thiol-modified gold electrode. J Electroanal Chem 455:121

    Article  CAS  Google Scholar 

  33. Yun YH, Bange A, Heineman WR, Halsall HB, Shanov VN, Dong ZY, Pixley S, Behbehani M, Jazieh A, Tu Y, Wong DKY, Bhattacharya A, Schulz MJ (2007) A nanotube array immunosensor for direct electrochemical detection of antigen–antibody binding. Sensor Actuat B Chem 123:177

    Article  Google Scholar 

  34. He PL, Wang ZY, Zhang LY, Yang WJ (2009) Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol. Food Chem 112:707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports provided by the Technology Standard Project of Shanghai Science and Technology Commission (No. 10DZ0504000), the Nanometer Technology Special Project of Shanghai Science and Technology Commission (No. 0852nm06200) and (No. 1052nm06700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, Q., Wang, Z.W., Chai, C.Y. et al. Multilayer structured immunosensor based on a glassy carbon electrode modified with multi-wall carbon nanotubes, polythionine, and gold nanoparticles. Microchim Acta 173, 459–467 (2011). https://doi.org/10.1007/s00604-011-0572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0572-9

Keywords

Navigation