Skip to main content
Log in

Separation and preconcentration of palladium using modified multi-walled carbon nanotubes without chelating agent

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A solid phase extraction procedure is presented for the separation and preconcentraton of trace levels of Pd(II) ion by using oxidized multiwalled carbon nanotubes (MWCNTs). Experimental parameters (pH, type of eluent, sample volume and flow rate of sample solutions) were studied in detail. The Pd(II) adsorbed on the MWCNTs was eluted with 3.0 M nitric acid and then determined by flame atomic absorption spectrometry. The effects of potentially interfering ions on the recovery of Pd(II) were also examined. Under optimized conditions, the method provides a preconcentration factor of 165, has a linear range from 1.0 ng mL−1 to 200 ng mL−1 of Pd(II), a detection limit of 0.3 ng mL−1, and a relative standard deviation 5.3% at 50 ng mL−1 of Pd(II). The method was validated by the extraction and determination of Pd(II) in water, fly ash, and road dust samples.

Palladium in aqueous solution was separated and preconentrated by oxidized modified multi-walled carbon nanotubes as solid sorbent without chelating agent. Under optimized conditions, a preconcentration factor of 165 was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Daniel S, Gladis JM, Rao TP (2003) Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application. Anal Chim Acta 488:173

    Article  CAS  Google Scholar 

  2. Rao CRM, Reddi GS (2000) Platinum group metals (PGM); occurrence, use and recent trends in their determination. Trends Anal Chem 19:565

    Article  CAS  Google Scholar 

  3. Liang P, Zhao E, Li F (2009) Dispersive liquid–liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry. Talanta 77:1854

    Article  CAS  Google Scholar 

  4. Farhadi K, Teimouri G (2005) Flame atomic absorption determination of palladium in solutions after preconcentration using octadecyl silica membrane disks modified by thioridazine·HCl. Talanta 65:925

    Article  CAS  Google Scholar 

  5. Leśniewska BA, Godlewska I, Godlewska-Zylkiewicz B (2005) The study of applicability of dithiocarbamate-coated fullerene C60 for preconcentration of palladium for graphite furnace atomic absorption spectrometric determination in environmental samples. Spectrochim Acta B 60:377

    Article  Google Scholar 

  6. Nakajima J, Ohno M, Chikama K, Seki T, Oguma K (2009) Determination of traces of palladium in stream sediment and auto catalyst by FI-ICP-OES using on-line separation and preconcentration with QuadraSil TA. Talanta 79:1050

    Article  CAS  Google Scholar 

  7. Muzikar M, Fontàs C, Hidalgo M, Havel J, Salvadó V (2006) A preconcentration system using polyamine Metalfix-Chelamine resin for the on-line determination of palladium(II) and platinum(IV) by inductively coupled plasma optical emission spectrometry. Talanta 70:1081

    Article  CAS  Google Scholar 

  8. Krishna MVB, Ranjit M, Chandrasekaran K, Venkateswarlu G, Karunasagar D (2009) On-line preconcentration and recovery of palladium from waters using polyaniline (PANI) loaded in mini-column and determination by ICP-MS; elimination of spectral interferences. Talanta 79:1454

    Article  CAS  Google Scholar 

  9. Zhang S, Pu Q, Liu P, Sun Q, Su Z (2002) Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation. Anal Chim Acta 452:223

    Article  CAS  Google Scholar 

  10. Jamali MR, Assadi Y, Shemirani F, Salavati-Niasari M (2007) Application of thiophene-2-carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination. Talanta 71:1524

    Article  CAS  Google Scholar 

  11. Kokya TA, Farhadi K (2009) Optimization of dispersive liquid–liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy. J Hazard Mater 169:726

    Article  CAS  Google Scholar 

  12. Mohamadi M, Mostafavi A (2010) A novel solidified floating organic drop microextraction based on ultrasound-dispersion for separation and preconcentration of palladium in aqueous samples. Talanta 81:309

    Article  CAS  Google Scholar 

  13. Jibrin SS, Huang CZ, Li J, Zhang N, Hu B (2009) Preconcentration/separation of gold and palladium by a microcolumn packed with azadirachta indica leaf powder and their determination in geological samples by ICP-OES. Geostand Geoanal Res 33:469

    Article  CAS  Google Scholar 

  14. Shamsipur M, Ramezani M, Sadeghi M (2009) Preconcentration and determination of ultra trace amounts of palladium in water samples by dispersive liquid liquid microextraction and graphite furnace atomic absorption spectrometry. Microchim Acta 166:235

    Article  CAS  Google Scholar 

  15. Soylak M, Ercan O (2009) Selective separation and preconcentration of copper (II) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes. J Hazard Mater 168:1527

    Article  CAS  Google Scholar 

  16. Najafi E, Sadeghi O, Tavassoli N, Mirahmadpour P, Zhad HRLZ (2010) Flame atomic absorption spectrometric determination of palladium in aqueous samples after preconcentration using nanoparticles of gamma-alumina functionalized with pyridine groups. Anal Sci 26:479

    Article  CAS  Google Scholar 

  17. Huang ZJ, Wang XG, Yang ZQ (2010) Determination of palladium by graphite furnace atomic absorption spectrometry after preconcentration with mci gel chp 20p resin as sorbent. Anal Lett 43:876

    Article  CAS  Google Scholar 

  18. Liang P, Zhao E, Liu R (2009) Determination of platinum and palladium in geological samples by inductively coupled plasma-atomic emission spectrometry after preconcentration with immobilised nanometric titanium dioxide. Geostand Geoanal Res 33:63

    CAS  Google Scholar 

  19. Thomas AM, Murty DSR (2008) Solid phase extraction and preconcentration of gold, palladium, and silver on chitin for their determination in silicate rocks by flame atomic absorption spectrometry. At Spectr 29:69

    CAS  Google Scholar 

  20. Chen SH, Xiao MF, Lu DB, Hu ZX, Zhan XL (2007) Preconcentration and separation of gold and palladium in geological samples via solid-phase extraction on carbon nanofibers prior to sample analysis by ICP-MS. At Spectr 28:90

    CAS  Google Scholar 

  21. Afzali D, Mostafavi A, Afzali Z (2010) Determination of trace amounts of Pd(II) ions in water and road dust samples by flame atomic absorption spectrometry after preconcentration on modified organo nanoclay. J AOAC Int 93(6):1952

    CAS  Google Scholar 

  22. Ojeda CB, Rojas F, Cano Pavon JM (2007) On-line preconcentration of palladium(II) using a microcolumn packed with a chelating resin, and its subsequent determination by graphite furnace atomic absorption spectrometry. Microchim Acta 158:103

    Article  Google Scholar 

  23. Praveen RS, Daniel S, Rao TP, Sampath S, Rao KS (2006) Flow injection on-line solid phase extractive preconcentration of palladium(II) in dust and rock samples using exfoliated graphite packed microcolumns and determination by flame atomic absorption spectrometry. Talanta 70:437

    Article  CAS  Google Scholar 

  24. Praveen RS, Daniel S, Rao TP (2006) Online flow injection preconcentration and flame atomic absorption spectrometric determination of palladium (II) using inorganic and inorganic-organic hybrid materials-packed microcolumns. Anal Lett 39:1187

    Article  CAS  Google Scholar 

  25. Cerutti S, Salonia JA, Gasquez JA, Olsina RA, Martinez LD (2005) Determination of palladium by ultrasonic nebulization coupled to ICP-OES after on-line preconcentration on activated carbon. At Spectr 26:145

    CAS  Google Scholar 

  26. Amais RS, Ribeiro JS, Segatelli MG, Yoshida IVP, Luccas PO, Tarley CRT (2007) Assessment of nanocomposite alumina supported on multi-wall carbon nanotubes as sorbent for on-line nickel preconcentration in water samples. Sep Purif Technol 58:122

    Article  CAS  Google Scholar 

  27. Zhou QX, Wang WD, Xiao JP (2006) Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Anal Chim Acta 559:200

    Article  CAS  Google Scholar 

  28. Zhou QX, Xiao JP, Wang WD, Liu GG, Shi QZ, Wang JH (2006) Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta 68:1309

    Article  CAS  Google Scholar 

  29. Liang P, Ding Q, Song F (2005) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28:2339

    Article  CAS  Google Scholar 

  30. Liang P, Liu Y, Guo L (2005) Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochim Acta B 60:125

    Article  Google Scholar 

  31. Liang P, Liu Y, Guo L, Zeng J, Lu HB (2004) Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 19:1489

    Article  CAS  Google Scholar 

  32. Katsumata H, Matsumoto T, KaneCo S, Suzuki T, Ohta K (2008) Preconcentration of diazinon using multiwalled carbon nanotubes as solid-phase extraction adsorbents. Microchem J 88:82

    Article  CAS  Google Scholar 

  33. Cai YQ, Cai YE, Mou SF, Lu YQ (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245

    Article  CAS  Google Scholar 

  34. Niu HY, Cai YQ, Shi YL, Wei FS, Liu JM, Mou SF, Jiang GB (2007) Evaluation of carbon nanotubes as a solid-phase extraction adsorbent for the extraction of cephalosporins antibiotics, sulfonamides and phenolic compounds from aqueous solution. Anal Chim Acta 594:81

    Article  CAS  Google Scholar 

  35. Niu HY, Shi YL, Cai YQ, Wei FS, Jiang GB (2009) Solid-phase extraction of sulfonylurea herbicides from water samples with single-walled carbon nanotubes disk. Microchim Acta 164:431

    Article  CAS  Google Scholar 

  36. Zang ZP, Hu Z, Li ZH, He Q, Chang XJ (2009) Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J Hazard Mater 172:958

    Article  CAS  Google Scholar 

  37. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466

    Article  CAS  Google Scholar 

  38. Shamspur T, Mostafavi A (2009) Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II). J Hazard Mater 168:1548

    Article  CAS  Google Scholar 

  39. Liu Y, Li Y, Yan XP (2008) Preparation, characterization, and application of L-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater 18:1536

    Article  CAS  Google Scholar 

  40. Chakrapani G, Mahanta PL, Murty DSR, Gomathy B (2001) Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing. Talanta 53:1139

    Article  CAS  Google Scholar 

  41. Nagashima H, Nakaoka A, Tajima S, Saito Y, Itoh K (1992) Catalytic hydrogenation of olefins and acetylenes over C60Pdn. Chem Lett 21(7):1361

    Article  Google Scholar 

  42. Nagashima H, Kato Y, Yamaguchi H, Kimura E, Kawanishi T, Kato M, Saito Y, Haga M, Itoh K (1994) Synthesis and reactions of organoplatinum compounds of C60, C60Ptn. Chem Lett 23(7):1207

    Article  Google Scholar 

  43. Song LC, Wang GF, Liu PC, Hu QM (2003) Synthetic and structural studies on transition metal fullerene complexes containing phosphorus and arsenic ligands: crystal and molecular structures of (D2-C60)M(dppf). Organometallics 22:4593

    Article  CAS  Google Scholar 

  44. Piperki E, Berndt H, Jackwerth E (1978) Investigations on the sorption of metal chelates on activated carbon. Anal Chim Acta 100:589

    Article  Google Scholar 

  45. Ebrahimzadeh H, Tavassoli N, Amini MM, Fazaeli Y, Abedi H (2010) Determination of very low levels of gold and palladium in wastewater and soil samples by atomic absorption after preconcentration on modified MCM-48 and MCM-41 silica. Talanta 81:1183

    Article  CAS  Google Scholar 

  46. Iglesias M, Anticó E, Salvadó V (2003) On-line determination of trace levels of palladium by flame atomic absorption spectrometry. Talanta 59:651

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was kindly co-funded by the Program for New Century Excellent Talents in University (NCET-10-0341), the Fundamental Research Funds for the Central Universities (10ZG01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Gang Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, CG., Zhang, Y., Wang, S. et al. Separation and preconcentration of palladium using modified multi-walled carbon nanotubes without chelating agent. Microchim Acta 173, 361–367 (2011). https://doi.org/10.1007/s00604-011-0565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0565-8

Keywords

Navigation