Skip to main content

Advertisement

Log in

Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive electrochemical sensor for determination of L-cysteine (CySH) is presented. It is based on vertically aligned multiwalled carbon nanotubes modified with Pt nanoparticles by magnetron sputtering deposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive. The electrochemistry of CySH was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The mechanism for the electrochemical reaction of CySH at the modified electrode at different pH values is discussed. The electrode exhibits a higher electrocatalytic activity towards the oxidation of CySH than comparable other electrodes. It displays a linear dependence (R 2 = 0.9980) on the concentration of CySH in the range between 1 and 500 μM and at an applied potential of +0.45 V, a remarkably low detection limit of 0.5 μM (S/N = 3), and an outstandingly high sensitivity of 1.42 × 103 μA mM−1 cm−2, which is the highest value ever reported. The electrode also is highly inert towards other amino acids, creatinine and urea. The sensor was applied to the determination of CySH in urine with satisfactory recovery, thus demonstrating its potential for practical applications.

Pt nanoparticles on carbon nanotubes by sputtering deposition show high performance for L-cysteine sensing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiao CD, Luong JHT (2010) A simple mathematical model for electric cell-substrate impedance sensing with extended applications. Biosens Bioelectron 25:1774

    Article  CAS  Google Scholar 

  2. Kubalczyk P, Bald E (2009) Analysis of orange juice for total cysteine and glutathione content by CZE with UV-absorption detection. Electrophoresisi 30:2280

    Article  CAS  Google Scholar 

  3. Sudeep PK, Joseph SB, George ST, Thomas K (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516

    Article  CAS  Google Scholar 

  4. Pelletier S, Lucy CA (2004) HPLC simultaneous analysis of thiols and disulfides: on-line reduction and indirect fluorescence detection without derivatization. Analyst 129:710

    Article  CAS  Google Scholar 

  5. Wang ZX, Rejtar T, Zhou ZS (2010) Desulfurization of cysteine-containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid Commun Mass Spectrom 24:267

    Article  CAS  Google Scholar 

  6. Ardakani MM, Talebi A, Naeimi H, Barzoky MN, Taghavinia N (2009) Fabrication of modified TiO2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and L-cysteine. J Solid State Electrochem 13:1433

    Article  CAS  Google Scholar 

  7. Pradac J, Koryta J (1968) Electrode processes of the sulfhydryl-disulfide system III. Cysteine at platinum and gold electrodes. J Electroanal Chem 17:185

    Article  Google Scholar 

  8. Fawcett WR, Fedurco M, Kovácová Z, Borkowska Z (1994) Oxidation of cysteine cysteinesulfinic acid cysteic acid on a polycrystalline gold electrode. J Electroanal Chem 368:265

    Article  CAS  Google Scholar 

  9. Reynaud JA, Maltoy B, Canessan P (1980) Electrochemical investigations of amino acids at solid electrodes: Part I. Sulfur components: cystine, cysteine, methionine. J Electroanal Chem 114:195

    Article  CAS  Google Scholar 

  10. Tan WT, Bond AM, Ngooi SW, Lim EB, Goh JK (2003) Electrochemical oxidation of L-cysteine mediated by a fullerene-C60-modified carbon electrode. Anal Chim Acta 491:181

    Article  CAS  Google Scholar 

  11. Spataru N, Sarada BV, Popa E, Tryk DA, Fujishima A (2001) Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal Chem 73:514

    Article  CAS  Google Scholar 

  12. Zhou M, Ding J, Guo LP, Shang QK (2007) Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal Chem 79:5328

    Article  CAS  Google Scholar 

  13. Tang XF, Liu Y, Hou HQ, You TY (2010) Electrochemical determination of L-tryptophan. L-tyrosine and L-ysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182

    Article  CAS  Google Scholar 

  14. Prasad KS, Muthuraman G, Zen JM (2008) Direct electrocatalytic oxidation of cysteine and cystine based on Nafion/lead oxide-manganese oxide combined catalyst. Electroanalysis 20:1167

    Article  CAS  Google Scholar 

  15. Bai YH, Xu JJ, Chen HY (2009) Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens Bioelectron 24:2985

    Article  CAS  Google Scholar 

  16. Filanovsky B (1999) Electrochemical response of new carbon electrodes bulk modified with cobalt phthalocyanine to some thiols in the presence of heptane or human urine. Anal Chim Acta 394:91

    Article  CAS  Google Scholar 

  17. Yang MY, Yang F, Zhang SY, Xu XY, Yang XJ (2008) Voltammetric determination of L-cysteine at bipyrine bridged copper(II) complex modified glassy carbon electrode. Electrochemistry 14:450

    Google Scholar 

  18. Maree S, Nyokong T (2000) Electrocatalytic behavior of substituted cobalt phthalocyanines towards the oxidation of cysteine. J Electroanal Chem 492:120

    Article  CAS  Google Scholar 

  19. Hocevar SB, Ogorevc B, Schachl K, Kalcher K (2004) Glucose microbiosensor based on MnO2 and glucose oxidase modified carbon fiber microelectrode. Electroanalysis 16:1711

    Article  CAS  Google Scholar 

  20. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66

    Article  CAS  Google Scholar 

  21. Zhang WD, Chen J (2009) Fabrication of a vertically aligned carbon nanotube electrode and its modification by nanostructured MnO2 for supercapacitors. Pure Appl Chem 81:2317

    Article  CAS  Google Scholar 

  22. Yang PH, Wei WZ, Tao CY, Xie BH, Chen XY (2008) Nano-silver/multi-walled carbon nanotube composite films for hydrogen peroxide electroanalysis. Microchim Acta 162:51

    Article  CAS  Google Scholar 

  23. Huang B, Zhang WD, Chen CH, Yu YX (2010) Electrochemical determination of methyl parathion at Pd/MWCNTs-modified electrode. Microchim Acta. doi:10.1007/s00604-010-0408-z

    Google Scholar 

  24. Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305

    Article  CAS  Google Scholar 

  25. Xu B, Zhang WD (2010) Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor. Electrochim Acta 55:2859

    Article  Google Scholar 

  26. Zhang WD, Xu B (2009) A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes. Electrochem Commun 11:1038

    Article  CAS  Google Scholar 

  27. Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259

    Article  Google Scholar 

  28. Zhang WD, Jiang LC, Ye JS (2009) Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes. J Phys Chem C 113:16247

    Article  CAS  Google Scholar 

  29. Zhao YD, Zhang WD, Cheng H, Luo QM (2003) Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sens Actuat B 92:279

    Article  Google Scholar 

  30. Fei SD, Chen JH, Yao SZ, Deng GH, He DL, Kuang YF (2005) Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal Biochem 339:29

    Article  CAS  Google Scholar 

  31. Dong SQ, Zhang S, Chi LZ, He PG, Wang QJ, Fang YZ (2008) Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode. Anal Biochem 381:199

    Article  CAS  Google Scholar 

  32. Chen X, Yang Y, Ding MY (2006) Electrocatalytic oxidation and sensitive detection of cysteine at layer-by-layer assembled carbon nanotube-modified electrode. Anal Chim Acta 557:52

    Article  CAS  Google Scholar 

  33. Buratti S, Brunettia B, Manninoa S (2008) Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes. Talanta 76:454

    Article  CAS  Google Scholar 

  34. Deng CY, Chen JH, Chen XL, Wang MD, Nie Z, Yao SZ (2009) Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim Acta 54:3298

    Article  CAS  Google Scholar 

  35. Zhang WD, Wen Y, Liu SM, Tjiu WC, Xu GQ, Gan LM (2002) Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon 40:1981

    Article  CAS  Google Scholar 

  36. Zhang WD, Xu B, Hong YX, Yu YX, Ye JS, Zhang JQ (2010) Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. J Solid State Electrochem 14:1713

    Article  CAS  Google Scholar 

  37. Zhang WD, Xu B, Jiang LC (2010) Functional hybrid materials based on carbon nanotubes and metal oxides. J Mater Chem 20:6383

    Article  CAS  Google Scholar 

  38. Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402

    Article  CAS  Google Scholar 

  39. Xu B, Ye ML, Zhang WD (2010) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Anal Chim Acta 674:20

    Article  CAS  Google Scholar 

  40. Zen JM, Kumar AS, Chen JC (2001) Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode. Anal Chem 73:1169

    Article  CAS  Google Scholar 

  41. Zhang JL, Tang YH, Song CJ, Zhang JJ (2006) PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C. J Power Sources 163:532

    Article  CAS  Google Scholar 

  42. Niu L, Liu QH, Wei FH, Wu SX, Liu PP, Cao XL (2005) Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: effect of Pt deposition modes. J Electroanal Chem 578:331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by National Natural Science Foundation of China (No.20773041), the Research Fund for the Doctoral Program of Higher Education (No. 20070561008), and the high technology research program, Ministry of Science and Technology of China (2008AA06Z311) to the work was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-De Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Peak potential of CySH oxidation at the Pt/VACNTs electrode against square root of the logarithm of scan rate (ν) (DOC 87 kb)

Fig. S2

Effect of work potential on the amperometric response of CySH. Supporting electrolyte: PBS (pH 6.5, 0.10 M); CySH concentration: 1.0 mM (DOC 142 kb)

Fig. S3

Long-term stability of the Pt/VACNTs sensor at room temperature (DOC 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, ML., Xu, B. & Zhang, WD. Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine. Microchim Acta 172, 439–446 (2011). https://doi.org/10.1007/s00604-010-0508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0508-9

Keywords

Navigation