Skip to main content
Log in

Double layer enzyme modified carbon nanotubes as label for sandwich-type immunoassay of tumor markers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An immunosensor was prepared for the determination of carcinoembryonic antigen (CEA). It is based on the use of multiwalled carbon nanotubes (MWCNTs) along with horseradish peroxidase-labeled antibody. The enzyme was assembled onto MWCNTs templates using the layer-by-layer technique and then conjugated to carcinoembryonic secondary antibodies (Ab2) as the enzyme label. The resulting assembly results in a largely amplified sensitivity. The response is linear in the range of 0.05 to 45 ng mL-1, with a detection limit of 16.0 pg mL-1. The immunosensor possesses good stability and good reproducibility.

A new immunosensor with double-layer enzyme-modified carbon nanotubes as label for sandwich-type tumor markers was proposed in this study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asensio L, Gonzalez I, Garcia T, Martin R (2008) Determination of food authenticity by enzyme-linked immunosorbent assay. Food Control 19:1–8

    Article  CAS  Google Scholar 

  2. Magkos F, Sidossis LS (2007) Recent advances in the measurement of adiponetion isoform distribution. Curr Opinion Clin Nutrition Metalbolic Care 10:571–575

    Article  CAS  Google Scholar 

  3. Van Hengel AJ (2007) Food allergen detection methods and the challenge to protect food-allergic consumers. Anal Bioanal Chem 389:111–118

    Article  Google Scholar 

  4. Tang DP, Yuan R, Chai YQ (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem 80(5):1582–1588

    Article  CAS  Google Scholar 

  5. Alfonta L, Anup KS, Winner I (2001) Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal Chem 73(1):91–102

    Article  CAS  Google Scholar 

  6. Huang Y, Wen Q, Jiang JH, Shen GL, Yu RQ (2008) A novel electrochemical immunosensor based on hydrogen evolution inhibition by enzymatic copper deposition on platinum nanoparticle-modified electrode. Biosens Bioelectron 24:600–605

    Article  CAS  Google Scholar 

  7. Wang LL, Jia X, Zhou YP, Xie QJ (2010) Sandwich-type amperometric immunosensor for human immunoglobulin G using antibody-adsorbed Au/SiO2 nanoparticles. Microchim Acta 168:245–251

    Article  CAS  Google Scholar 

  8. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Cancer Biol 9:67–81

    Article  CAS  Google Scholar 

  9. Sumpter BG, Jiang DE, Meunier V (2008) New insight into carbon-nanotube electronic-structure selectivity. Small 4:2035–2042

    Article  CAS  Google Scholar 

  10. Shen SC, Hidajat K, Yu LE, Kawi S (2004) Simple hydrothermal synthesis of nanostructured and nanorod Zn-Al complex oxides as novel nanocatalysts. Adv Mater 16:541–545

    Article  CAS  Google Scholar 

  11. Wang J, Liu G, Rasul M (2003) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011

    Article  Google Scholar 

  12. Sun YY, Wang HY, Sun CQ (2008) Amperometric glucose biosensor based on layer-by-layer covalent attachment of AMWNTs and IO 4 -oxidized GOx. Biosens Bioelectron 24:22–28

    Article  CAS  Google Scholar 

  13. Liang ZJ, Su AS, Yu A, Caruso F (2003) Nanotubes prepared by layer-by-layer coating of porous membrane templates. Adv Mater 15:1849–1853

    Article  CAS  Google Scholar 

  14. Byung S, Bumsu K, Kyung D, Kim B (2008) Electrorheological properties of carbon nanotube/polyelectrolyte self-assembled polystyrene particles by layer-by-layer ass. J Polym Sci Pol Chem 46:1058–1065

    Article  Google Scholar 

  15. Zucolotto V, Daghastanli K, Hayasaka C, Ciancaglini P (2007) Using capacitance measurements as the detection method in antigen-containing layer-by-layer films for biosensing. Anal Chem 79:2163–2167

    Article  CAS  Google Scholar 

  16. Aroca RF, Goulet PJG, Santos DS, Oliveira ON (2005) Silver nanowire layer-by-layer films as substrates for surface-enhanced raman scattering. Anal Chem 77:378–382

    Article  CAS  Google Scholar 

  17. Kim DH, Karan P, Göring P, Leclaire J, Majoral JP, Gösele U, Steinhart M, Knol W (2005) Formation of dendrimer nanotubes by layer-by-layer deposition. Small 1:99–102

    Article  CAS  Google Scholar 

  18. Munge B, Liu GD, Collins G, Wang J (2005) Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal Chem 77(14):4662–4666

    Article  CAS  Google Scholar 

  19. Lai GS, Yan F, Ju HX (2009) Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem 81:9730–9736

    Article  CAS  Google Scholar 

  20. Cui RJ, Huang HP, Zhu JJ (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673

    Article  CAS  Google Scholar 

  21. Wang J, Charlestimchalk LYH (2008) Cabon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organphosphate pesticides and nerve agents. Environ Sci Technol 42:2668–2693

    Article  Google Scholar 

  22. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Direct electrochemistry of Cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 74(9):1993–1997

    Article  CAS  Google Scholar 

  23. Chen SH, Yuan R, Chai YQ, Zhang LY, Wang N, Li XL (2007) Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold collolidal nanoparticles. Biosens Bioelectron 22(7):1268–1274

    Article  CAS  Google Scholar 

  24. Qu FL, Yang MH, Jiang JH, Shen GL, Yu RQ (2005) Amperometric biosensor for choline based layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal Biochem 344(1):108–114

    Article  CAS  Google Scholar 

  25. Bi S, Zhou H, Zhang SS (2009) Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens Bioelectron 24(10):2961–2966

    Article  CAS  Google Scholar 

  26. Lvov YM, Lu ZQ, Shenkman JB, Zu X, Rusling JF (1998) Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120:4073–4080

    Article  CAS  Google Scholar 

  27. Zhuo Y, Yuan R, Chai YQ (2008) Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials 29(10):1501–1508

    Article  CAS  Google Scholar 

  28. Li N, Yuan R, Chai YQ (2008) An amperometric immunosensor with a DNA polyion complex membrane/gold nanoparticles-backbone for antibody immobilisation. Electrochim Acta 54(2):235–241

    Article  CAS  Google Scholar 

  29. Zhuo Y, Yuan R, Chai YQ (2008) Enhancement of carcinoembryonic antibody immobilization on gold electrode modified by gold nanoparticles and SiO2/Thionine nanocomposite. J Electroanal Chem 628:90–96

    Article  Google Scholar 

  30. Dai Z, Yan F, Ju GX (2003) CEA electrochemical immunoassay for rapid separation. Anal Lab 22(11):297–298

    Google Scholar 

  31. Guan S, Yuan R, Chai YQ (2009) CEA immunosensor based on poly 2, 6–diaminopyridine film and gold nanoparticles. Anal Chem 16:1923–1928

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21075100), the Ministry of Education of China (Project 708073), the Natural Science Foundation of Chongqing City (NO. CSTC-2009BA1003), and High Technology Project Foundation of Southwest University (XSGX 02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, M., Yuan, R., Chai, Y. et al. Double layer enzyme modified carbon nanotubes as label for sandwich-type immunoassay of tumor markers. Microchim Acta 172, 373–378 (2011). https://doi.org/10.1007/s00604-010-0502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0502-2

Keywords

Navigation