Skip to main content
Log in

Core-shell fluorescent silica nanoparticles for sensing near-neutral pH values

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

pH-responsive fluorescent core-shell silica nanoparticles (SiNPs) were prepared by encapsulating the pH-sensitive fluorophore 8-hydroxypyrene-1,3, 6-trisulfonate into their silica shell via a facile reverse microemulsion method. The resulting SiNPs were characterized by SEM, TEM, fluorescence lifetime spectroscopy, photobleaching experiments, and photoluminescence. The core-shell structure endows the SiNPs with reduced photobleaching, excellent photostability, minimized solvatachromic shift, and increased fluorescence efficiency compared to the free fluorophore in aqueous solution. The dynamic range for sensing pH ranges from 5.5 to 9.0. The nanosensors show excellent stability, are highly reproducible, and enable rapid detection of pH. The results obtained with the SiNPs are in good agreement with data obtained with a glass electrode.

Single-nanoparticle laboratories: core-shell silica fluorescent nanoparticles for pH sensing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709

    Article  CAS  Google Scholar 

  2. Peterson JI, Goldstein SR, Fitzgerald RV, Buckhold DK (1980) Fiber optic pH probe for physiological use. Anal Chem 152:864

    Article  Google Scholar 

  3. Lee M, Niko G, Gubernator NG, Sulzer D, Sames D (2010) Development of pH-responsive fluorescent false neurotransmitters. J Am Chem Soc 132:8828

    Article  CAS  Google Scholar 

  4. Doussineau T, Smaïhi M, Mohr GJ (2009) Two-dye core/shell zeolite nanoparticles: a new tool for ratiometric pH measurements. Adv Funct Mater 19:117

    Article  CAS  Google Scholar 

  5. Ji J, Rosenzweig N, Griffin C, Rosenzweig Z (2000) Synthesis and application of submicrometer fluorescence sensing particles for lysosomal pH measurements in murine macrophages. Anal Chem 72:3497

    Article  CAS  Google Scholar 

  6. Zhu Q, Aller RC, Fan Y (2005) High-performance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water. Environ Sci Technol 39:8906

    Article  CAS  Google Scholar 

  7. Gao F, Wang L, Tang LJ, Zhu CQ (2005) A novel nano-sensor based on rhodamine-β-isothiocyanate-doped silica nanoparticles for pH measurement. Microchim Acta 152:131

    Article  CAS  Google Scholar 

  8. Gao F, Tang LJ, Dai L, Wang L (2007) A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochim Acta A 67:517

    Article  Google Scholar 

  9. Yimit A, Itoh K, Murabayashi M (2003) Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens Actuators B: Chem 88:239

    Article  Google Scholar 

  10. Gao F, Tang LJ, Dai L, Wang L (2007) A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochim Acta A 67:517

    Article  Google Scholar 

  11. Taira T, Paalasmaa P, Voipio J, Kaila K (1995) Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice. J Neurophysiol 74:643

    CAS  Google Scholar 

  12. Kang EH, Shim JM, Kang HJ, Park SW, Lee JW, Lee JK (2006) Modification of mesostructure base on composition of silica materials and their applications to pH sensing. Poly Adv Technol 17:845

    Article  CAS  Google Scholar 

  13. Jin Z, Su Y, Duan Y (2000) An improved optical pH sensor based on polyaniline. Sens Actuators B: Chem 71:118

    Article  Google Scholar 

  14. Pringsheim E, Terpetschnig E, Wolfbeis OS (1997) Optical sensing of pH using thin films of substituted polyanilines. Anal Chim Acta 357:247

    Article  CAS  Google Scholar 

  15. Ruan C, Ong KG, Mungle C, Paulose M, Nickl NJ, Grimes CA (2003) A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sens Actuators B: Chem 96:61

    Article  Google Scholar 

  16. Peng H, Stolwijk JA, Sun LN, Wegener J, Wolfbeis OS (2010) A nanogel for ratiometric fluorescent sensing of intracellular pH values. Angew Chem Int Ed 49:4246

    Article  CAS  Google Scholar 

  17. Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Core/shell fluorescent nanoparticles for chemical sensing: towards single-particle laboratories. Small 2:723

    Article  CAS  Google Scholar 

  18. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York

    Google Scholar 

  19. Buck SM, Koo YL, Park E, Xu H, Philbert MA, Brasuel MA, Kopelman R (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8:540

    Article  CAS  Google Scholar 

  20. Ma A, Rosenzweig Z (2005) Synthesis and analytical properties of micrometric biosensing lipobeads. Anal Bioanal Chem 382:28

    Article  CAS  Google Scholar 

  21. Hilliard LR, Zhao XJ, Tan WH (2002) Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470:51

    Article  CAS  Google Scholar 

  22. Qhobosheane M, Santra S, Zhang P, Tan WH (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274

    Article  CAS  Google Scholar 

  23. Ye ZQ, Tan MQ, Wang GL, Yuan JL (2004) Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium(III) fluorescent nanoparticles. Anal Chem 76:513

    Article  CAS  Google Scholar 

  24. Santra S, Zhang P, Wang KM, Tapec R, Tan WH (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988

    Article  CAS  Google Scholar 

  25. Zhao XJ, Tapec-dytioco R, Tan WH (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125:11474

    Article  CAS  Google Scholar 

  26. He XX, Duan JH, Wang KM, Tan WH, Lin X, He CM (2004) A novel fluorescent label based on orgainic dye-doped silica nanoparticles for hepgliver cancer cell recognition. J Nanosci Nanotech 4:585

    Article  CAS  Google Scholar 

  27. Gao F, Luo FB, Yin J, Wang L (2008) Preparation of aminated core-shell fluorescent nanoparticles and their application to the synchronous fluorescence determination of γ-globulin. Luminescence 23:392

    Article  CAS  Google Scholar 

  28. Lian W, Litherland SA, Badrane H, Tan WH, Wu DH, Baker HV, Guling PA, Lim DV, Jin SG (2004) Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem 334:135

    Article  CAS  Google Scholar 

  29. Luo FB, Yin J, Gao F, Wang L (2009) A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy. Microchim Acta 165:23

    Article  CAS  Google Scholar 

  30. Gao F, Luo F, Chen XX, Yao W, Yin J, Yao Z, Wang L (2009) A novel nonenzymatic fluorescent sensor for glucose based on silica nanoparticles doped with europium coordination compound. Talanta 80:202

    Article  CAS  Google Scholar 

  31. Wang L, Wang KM, Santra S, Zhao XJ, Hilliard LR, Smith JE, Wu Y, Tan WH (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646

    Article  Google Scholar 

  32. Yang YH, Gao MY (2005) Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater 17:2354

    Article  CAS  Google Scholar 

  33. Yan JL, Estevez M, Smithl JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2:44

    Article  Google Scholar 

  34. Tan WH, Wang KM, He XX, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24:621

    Article  CAS  Google Scholar 

  35. Larson DR (2004) Optical approaches to the study of nanoparticles and biology:quantum dots, silica dots and retroviruses. Cornell University, Ithaca

    Google Scholar 

  36. Wolfbeis OS, Fuerlinger E, Kroneis H, Marsoner H (1983) A study on fluorescent indicators for measuring near-neutral (physiological) ph values. Fresenius’ Z Anal Chem 314:319

    Article  Google Scholar 

  37. Weigl BH, Holobar A, Trettnak W, Klimant I, Kraus H, O’Leary P, Wolfbeis OS (1994) Optical triple sensor for measuring pH, oxygen and carbon dioxide. J Biotechnol 32:127

    Article  CAS  Google Scholar 

  38. Holobar A, Weigl BH, Trettnak W, Bene R, Lehmann H, Nena V, Rodriguez NV, Wollschlager A, O’Leary P, Raspor P, Wolfbeis OS (1993) Experimental results on an optical pH measurement system for bioreactors. Sens Actuators B: Chem 11:425

    Article  Google Scholar 

Download references

Acknowledgements

F. Gao is grateful for the financial support from the Natural Science Foundation of China (Grant No. 20705001, 21055001), the Key Project of Educational Committee of Anhui Province (Grant No.KJ2007A008), and Starting Foundation for PhD of Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Chen, X., Ye, Q. et al. Core-shell fluorescent silica nanoparticles for sensing near-neutral pH values. Microchim Acta 172, 327–333 (2011). https://doi.org/10.1007/s00604-010-0494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0494-y

Keywords

Navigation