Skip to main content
Log in

Electrochemical determination of nitrite via covalent immobilization of a single-walled carbon nanotubes and single stranded deoxyribonucleic acid nanocomposite on a glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel method has been developed for determination of nitrite by modifying the surface of a glassy carbon electrode (GCE) using single-walled carbon nanotubes with covalently immobilized single-strand deoxyribonucleic acid. The modified electrodes were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. The results demonstrate that the nanotube-DNA nanocomposite has been successfully immobilized on the surface of the GCE. The new electrode, under optimum conditions at room temperature, exhibits excellent electrocatalytic activity towards the oxidation of nitrite, with a significantly reduction of the overpotential. The linear range for the detection of nitrite is from 0.6 to 540 μM, with a sensitivity of 0.216 μA μM−1, and a detection limit as low as 0.15 μM. The electrode showed good reproducibility and high stability and was successfully used to analyze nitrite in water and sausage samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  2. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1999) Nitrite and nitrosyl compounds in food preservation. Biochim Biophys Acta 1411:475–488

    Article  Google Scholar 

  3. Almeida G, Tavares P, Lampreia J, Moura JJG, Moura I (2001) Developmen of an electrochemical biosensor for nitrite determination. J Inorg Biochem 86:121

    Google Scholar 

  4. Gao F, Zhang L, Wang L, She SK, Zhu CQ (2005) Ultrasensitive and selective determination of trace amounts of nitrite ion with a novel fluorescence probe mono[6-N(2-carboxy-phenyl)]-β-cyclodextrin. Anal chim Acta 533:25–29

    Article  CAS  Google Scholar 

  5. Hanajiri RK, Martin RS, Lunte SM (2002) Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Anal Chem 74:6370–6377

    Article  Google Scholar 

  6. Lagalante AF, Greenbacker PW (2007) Flow injection analysis of imidacloprid in natural waters and agricultural matrixes by photochemical dissociation, chemical reduction, and nitric oxide chemiluminescence detection. Anal chim Acta 590:151–158

    Article  CAS  Google Scholar 

  7. Wang P, Mai ZB, Dai Z, Li YX, Zou XY (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242–3247

    Article  CAS  Google Scholar 

  8. Huang X, Li YX, Chen YL, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Actuators B 134:780–786

    Article  Google Scholar 

  9. Ferreira IMPLVO, Silva S (2008) Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta 74:1598–1602

    Article  CAS  Google Scholar 

  10. Liu Y, Gu HY (2008) Amperometric detection of nitrite using a nanometer-sized gold colloid modified pretreated glassy carbon electrode. Microchim Acta 162:101–106

    Article  CAS  Google Scholar 

  11. Zhang Y, Luo LQ, Ding YP, Li L (2009) Electrochemical determination of nitrite in water samples using a glassy carbon electrode modified with didodecyldimethylammonium bromide. Microchim Acta 167:123–128

    Article  CAS  Google Scholar 

  12. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  13. Yakabson BI, Smally RE (1997) Fullerene nanotubes:C1, 000, 000 and beyond. Am Sci 85:324–327

    Google Scholar 

  14. Zhao K, Song HY, Zhuang SQ, Dai LM, He PG, Fang YZ (2007) Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochem Commun 9:65–70

    Article  CAS  Google Scholar 

  15. Li YX, Wang P, Li F, Huang X, Wang L, Lin XQ (2008) Covalent immobilization of single-walled carbon nanotubes and single-stranded deoxyribonucleic acid nanocomposites on glassy carbon electrode: preparation, characterization, and applications. Talanta 77:833–838

    Article  CAS  Google Scholar 

  16. Li YX, Lin XQ, Jiang ChM (2006) Fabrication of nanobiocomposite film containing heme proteins and carbon nanotubes on a choline modified glassy carbon electrode: direct electrochemistry and electrochemical catalysis. Electroanal 18:2085–2091

    Article  CAS  Google Scholar 

  17. Liu Y, Lei J, Ju H (2008) Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite. Talanta 77:833–828

    Article  Google Scholar 

  18. Kang X, Mai Z, Zou X, Cai P, Mo J (2008) Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid. Talanta 74:879–886

    Article  CAS  Google Scholar 

  19. Fink HW, Schonenberger C (1999) Electrical conduction through DNA molecules. Nature 398:407–410

    Article  CAS  Google Scholar 

  20. Murphy CJ, Arkin MA, Jenkins Y, Ghatlia ND, Bossmann SH, Turro NJ (1993) Long-range photoinduced electron transfer through a DNA helix. Science 262:1025–1029

    Article  CAS  Google Scholar 

  21. Yanagi H, Mukai H, Ikuta K, Shibutani T, Kamikado T, Yokoyama S, Mashiko S (2002) Molecularly resolved dynamics for two-dimensional nucleation of supramolecular assembly. Nanotechnology 2:601–604

    CAS  Google Scholar 

  22. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548

    Article  CAS  Google Scholar 

  23. Han XG, Li YL, Deng ZX (2007) DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522

    Article  CAS  Google Scholar 

  24. Ma YF, Ali SR, Dodoo AS, He HX (2006) Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J Phys Chem B 110:16359–16365

    Article  CAS  Google Scholar 

  25. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  CAS  Google Scholar 

  26. Lin XQ, Jiang XH, Lu LP (2005) DNA deposition on carbon electrodes under controlled dc potentials. Biosens Bioelectron 20:1709–1717

    Article  CAS  Google Scholar 

  27. Lu LP, Wang SQ, Lin XQ (2004) Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Anal Chim Acta 519:161–166

    Article  CAS  Google Scholar 

  28. Chen SM (1998) Bicatalyst electrocatalytic reduction and oxidation of nitrite by Fe(II) and Cu(II) complexes in the same solution. J Electroanal Chem 457:23–30

    Article  CAS  Google Scholar 

  29. Kamyabi MA, Aghajanloo F (2008) Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. J Electroanal Chem 614:157–165

    Article  CAS  Google Scholar 

  30. Salimi A, Hallaj R, Mamkhezri H, Hosaini SMT (2008) Electrochemical properties and electrocatalytic activity of FAD immobilized onto cobalt oxide nanoparticles: application to nitrite detection. J Electroanal Chem 619–620:31–38

    Article  Google Scholar 

  31. Zhu XH, Kang GF, Lin XQ (2007) PdCu alloy nanoclusters: generation and activity tuning or electrocatalytic oxidation of nitrite. Microchim Acta 159:141–148

    Article  CAS  Google Scholar 

  32. Wang P, Li F, Huang Li YX, Wang L (2008) In situ electrodeposition of Pt nanoclusters on glassy carbon surface modified by monolayer choline film and their electrochemical applications. Electrochem Commun 10:195–199

    Article  CAS  Google Scholar 

  33. Chen XW, Wang F, Chen ZL (2008) An electropolymerized Nile Blue sensing film-based nitrite sensor and application in food analysis. Anal Chim Acta 623:213–220

    Article  CAS  Google Scholar 

  34. Wen ZH, Kang TF (2004) Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta 62:351–355

    Article  CAS  Google Scholar 

  35. Liu SQ, Ju HX (2003) Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. Analyst 128:1420–1424

    Article  CAS  Google Scholar 

  36. Zhao K, Song HY, Zhuang SQ, Dai LM, He PG, Fang YZ (2007) Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochem Commun 9:65–70

    Article  CAS  Google Scholar 

  37. Jiang LY, Wang RX, Li XM, Jiang LP, Lu GH (2005) Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem Commun 7:597–601

    Article  CAS  Google Scholar 

  38. Sousa AL, Santos WJR, Luz RCS, Damos FS, Kubota LT, Tanaka AA, Tanaka SMCN (2008) Amperometric sensor for nitrite based on copper tetrasulphonated phthalocyanine immobilized with poly-l-lysine film. Talanta 75:333–338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (NSFC, No.20975002) and Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 321 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xian, H., Wang, P., Zhou, Y. et al. Electrochemical determination of nitrite via covalent immobilization of a single-walled carbon nanotubes and single stranded deoxyribonucleic acid nanocomposite on a glassy carbon electrode. Microchim Acta 171, 63–69 (2010). https://doi.org/10.1007/s00604-010-0404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0404-3

Keywords

Navigation