Skip to main content
Log in

Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The paper describes an electrochemical nitrite sensor based on the use of a nanocomposite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polyacenic semiconductor (PAS), a quasi-graphene carbon material. The composite possesses a large specific surface area and a large number of active sites. It shows high catalytic activity towards the oxidation of nitrite. Such activity is not observed in the individual components. Nitrite provides a well-defined oxidation peak at 0.80 V (vs. Ag/AgCl) at a pH value of 7.4. The influence of many possible ionic interferents was found to be negligible. In addition, the oxidation peaks of dopamine hydrochloride, ascorbic acid, uric acid and nitrite are well separated from each other. Under optimized experimental conditions, anodic peak currents are linearly related to nitrite concentrations in the range from 0.3 μM to 6.6 mM, and the detection limit is 98 nM (at an S/N ratio of 3). The sensor was used to quantify nitrite in (spiked) tap water and sausage samples, where it gave acceptable recoveries.

Schematic presentation of a nanocomposite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polyacenic semiconductor (PAS). The composite possesses a large specific surface area and a large number of active sites. It shows high catalytic activity towards the oxidation of nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Filik H, Giray D, Ceylan B, Apak R (2011) A novel fiber optic spectrophotometric determination of nitrite using safranin O and cloud point extraction. Talanta 85:1818–1824

    Article  CAS  Google Scholar 

  2. Wang X, Adams E, Van Schepdael A (2012) A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta 97:142–144

    Article  CAS  Google Scholar 

  3. Feng S, Zhang M, Huang Y, Yuan D, Zhu Y (2013) Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Talanta 117:456–462

    Article  CAS  Google Scholar 

  4. Wang X, Fan J, Ren R, Jin Q, Wang J (2016) Rapid determination of nitrite in foods in acidic conditions by high-performance liquid chromatography with fluorescence detection. J Sep Sci 39:2263–2269

    Article  CAS  Google Scholar 

  5. Haldorai Y, Kim JY, Vilian ATE, Heo NS, Huh YS (2016) An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sensors Actuators B Chem 227:92–99

    Article  CAS  Google Scholar 

  6. Wang J, Xu G, Wang W, Xu S, Luo X (2015) Nitrite oxidation with copper–cobalt nanoparticles on carbon nanotubes doped conducting polymer PEDOT composite. Chem Asian J 10:1892–1897

    Article  CAS  Google Scholar 

  7. Wang H, Chen P, Wen F, Zhu Y, Zhang Y (2015) Flower-like Fe2O3@ MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sensors Actuators B Chem 220:749–754

    Article  CAS  Google Scholar 

  8. Meng Z, Zheng J, Li Q (2015) A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode. J Iran Chem Soc 12:1053–1060

    Article  CAS  Google Scholar 

  9. Marlinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113–1122

    Article  CAS  Google Scholar 

  10. Mehmeti E, Stanković DM, Hajrizi A, Kalchera K (2016) The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination. Talanta 159:34–39

    Article  CAS  Google Scholar 

  11. Cosnier S, Holzinger M (2011) Electrosynthesized polymers for biosensing. Chem Soc Rev 40:2146–2156

    Article  CAS  Google Scholar 

  12. Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696

    Article  CAS  Google Scholar 

  13. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769

    Article  CAS  Google Scholar 

  14. Matsui T, Inose Y, Powell DA, Shadrivov LV (2016) Electroactive tuning of double-layered metamaterials based on π-conjugated polymer actuators. Adv Opt Mater 4:135–140

    Article  CAS  Google Scholar 

  15. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  16. Scott JC, Bozano LD (2007) Nonvolatile memory elements based on organic materials. Adv Mater 19:1452–1463

    Article  CAS  Google Scholar 

  17. Kim SH, Bae TS, Heo W, Joo T, Song KD, Park HG, Ryu SY (2015) Effects of gold-nanoparticle surface and vertical coverage by conducting polymer between indium tin oxide and the hole transport layer on organic light-emitting diodes. ACS Appl Mater Interfaces 7:15031–15041

    Article  CAS  Google Scholar 

  18. Roh E, Hwang BU, Kim D, Kim BY, Lee NE (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a Nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261

    Article  CAS  Google Scholar 

  19. Inal S, Malliaras GG, Rivnay J (2016) Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers. J Mater Chem C 4:3942–3947

    Article  CAS  Google Scholar 

  20. Deetuam C, Samthong C, Thongyai S, Praserthdam P, Somwangthanaroj A (2014) Synthesis of well dispersed graphene in conjugated poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate via click chemistry. Compos Sci Technol 93:1–8

    Article  CAS  Google Scholar 

  21. Castagnola V, Descamps E, Lecestre A, Dahan L, Remaud J, Nowak LG, Bergaud C (2015) Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens Bioelectron 67:450–457

    Article  CAS  Google Scholar 

  22. Hui N, Wang W, Xu G, Luo X (2015) Graphene oxide doped poly (3, 4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. J Mater Chem B 3:556–561

    Article  CAS  Google Scholar 

  23. Vreeland RF, Atcherley CW, Russell WS, Xie JY, Lu D, Laude ND, Porreca F, Heien ML (2015) Biocompatible PEDOT: Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. Anal Chem 87:2600–2607

    Article  CAS  Google Scholar 

  24. Tolstopjatova EG, Eliseeva SN, Nizhegorodova AO, Kondratiev VV (2015) Electrochemical properties of composite electrodes, prepared by spontaneous deposition of manganese oxide into poly-3,4-ethylendioxythiophene. Electrochim Acta 173:40–49

    Article  CAS  Google Scholar 

  25. Tepeli Y, Aslan S, Sezer E, Anik U (2015) Combination of a poly (3, 4-ethylene-dioxythiophene) electrode in the presence of sodium dodecyl sulfate with centri-voltammetry. Anal Methods 7:6740–6746

    Article  CAS  Google Scholar 

  26. Wang W, Xu G, Cui XT, Sheng G, Luo X (2014) Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 58:153–156

    Article  CAS  Google Scholar 

  27. Zanardi C, Terzi F, Pigani L, Heras A, Colina A, Lopez-Palacios J, Seeber R (2008) Development and characterisation of a novel composite electrode material consisting of poly (3, 4-ethylenedioxythiophene) including au nanoparticles. Electrochim Acta 53:3916–3923

    Article  CAS  Google Scholar 

  28. Yamabe T, Fujii M, Mori S, Kinoshita H, Yata S (2004) The structural analysis of various hydro-graphene species. Synth Met 145:31–36

    Article  CAS  Google Scholar 

  29. Liu J, Zhang X, Wang R, Zhang J (2012) Facile synthesis of LiFePO4 nanoparticles coated by few layers of PAS with quasi-graphene structure. Int J Electrochem Sci 7:12983–12991

    CAS  Google Scholar 

  30. Wang C, Lin L, Lu N, Zhao Q, Sun L, Zhao S, Wang R (2008) Preparation and structure of porous carbons by pyrolysis of phenol formaldehyde resin. Acta Chim Sin 66:1909–1914

    CAS  Google Scholar 

  31. Wang J, Zhou H, Fan D, Zhao D, Xu C (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182:1055–1061

    Article  CAS  Google Scholar 

  32. Rabti A, Aoun SB, Raouafi N (2016) A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Microchim Acta 183:3111–3117

    Article  CAS  Google Scholar 

  33. Zhuang Z, Lin H, Zhang X, Qiu F, Yang H (2016) A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchim Acta 183:2807–2814

    Article  CAS  Google Scholar 

  34. Dai J, Deng D, Yuan Y, Zhang J, Deng F, He S (2016) Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Microchim Acta 183:1553–1561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (U1303283), National High Technology Research and Development Program of China (2015AA034602), China Postdoctoral Science Foundation (2015 M582738), The Science and Technology Project and Achievement Transformation Plan of Modern Agriculture of Xinjiang Corps (2016 AC010), Key Laboratory of Prevention and Control of Animal Disease of Xinjiang Corps (BTDJ05), Key research and development project of Shandong Province (2016GGB01989) and The High-end Foreign Experts Recruitment Program of China (GDJ20143700012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunguo Wang or Chuangfu Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(PDF 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, X., Wang, C. et al. Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Microchim Acta 184, 2073–2079 (2017). https://doi.org/10.1007/s00604-017-2189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2189-0

Keywords

Navigation