Skip to main content
Log in

Tyrosinase biosensor based on a boron-doped diamond electrode modified with a polyaniline-poly(vinyl sulfonate) composite film

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A BDD electrode modified with polyaniline (PANI) film doped with polyvinyl sulphonate (PVS), containing in-situ deposited tyrosinase (Tyr) enzyme was prepared and characterized. The PANI-PVS film was electrochemically polymerized onto the BDD surface by cyclic voltammetry (CV) at 50 mV.s−1 (versus Ag/AgCl). An increase in current density with increasing number of cycles was an indication of the polymer growth. The morphologies of the composite films were characterized by scanning electron microscopy (SEM). Electrochemical characterization confirmed the successful doping of the PANI film by PVS and that the template PVS directed the electron transfer at the biosensor interface. SEM provided evidence of the influence of the synthesis medium on the morphology and surface area of the composite film. Synthesis from HCl produced homogenous, finely granular thin film with increased surface area which is thought to be responsible for the increased redox currents measured. PANI/PVS served both as an efficient mediator and biocompatible enzyme immobilisation platform for the substrate L-tyrosine at low concentrations with apparent Michaelis-Menton (\( {\hbox{K}}_{\rm{m}}^{\rm{app}} \)) 1 × 10−2 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Michaelson JC, McEvoy AJ, Gratzel M (1993) Electrochemical behaviour of various polyaniline morphologies in non-aqueous electrolytes. Synth Met 55–57:564

    Google Scholar 

  2. Miras MC, Barbero C, Kötz R, Haas O (1994) Voltamperommetric study of chemically made polyaniline powder with cavity microelectrode technique. J Electroanal Chem 369:399

    Article  Google Scholar 

  3. Barbero C, Miras MC, Haas O, Kötz R (1991) Alteration of the ion exchange mechanism of an electroactive polymer by manipulation of the active site. Probe beam deflection and quartz crystal microbalance study of poly(aniline) and poly(N-methylaniline). J Electroanal Chem 310:437

    Article  CAS  Google Scholar 

  4. Troise Frank MH, Denuault G (1994) Scanning electrochemical microscope (secm) study of the relationship between proton concentration and electronic charge as a function of ionic-strength during the oxidation of polyaniline. J Electroanal Chem 379(1–2):399–406

    Article  Google Scholar 

  5. Pruneanu S, Csahok E, Kertész V, Inzelt G (1998) Electrochemical quartz crystal microbalance study of the influence of the solution composition on the behaviour of poly(aniline) electrodes. Electrochim Acta 16–17:2305

    Article  Google Scholar 

  6. Focke WJ, Wneck GE, Wei Y (1987) Influence of the oxidation state, pH and counterion on conductivity of polyaniline. J Phys Chem 91:5813

    Article  CAS  Google Scholar 

  7. Samlenski R, Haug C, Brenn R, Wild C, Locher R, Koidl P (1996) Characterisation and lattice location of nitrogen and boron in homoepitaxial CVD diamond. Diamond Relat Mater 5:947

    Article  CAS  Google Scholar 

  8. Pleskov YV (1999) Synthetic diamond in electrochemistry. Russ Chem Rev 68:381–392

    Article  CAS  Google Scholar 

  9. Zheng L, Xiong L, Liu C, Jin L (2006) Electrochemical synthesis of a novel sulfonated polyaniline and its electrochemical properties. Eur Polym J 42:2328

    Article  CAS  Google Scholar 

  10. Shah AHA, Holze R (2008) Spectroelectrochemistry of two-layered composites of polyaniline and poly (o-aminophenol). Electrochim Acta 53:4642–4653

    Article  CAS  Google Scholar 

  11. Ndangili PM, Waryo TT, Muchindu M, Baker PGL, Ngila CJ, Iwuoha EI (2009) Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline–polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor. Electrochim Acta. doi:10.1016/j.electacta.2009.04.058

    Google Scholar 

  12. Granger MC, Witek M, Xu J, Wang J, Hupert M, Hanks A, Koppang MD, Butler JE, Lucazeau G, Mermoux M, Strojek JW, Swain GM (2000) Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes. Anal Chem 72(16):3793–37804

    Article  CAS  Google Scholar 

  13. Holt KB, Bard AJ, Show Y, Swain GM (2004) Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels. J Phys Chem B 108(39):15117–15127

    Article  CAS  Google Scholar 

  14. Fischer AE, Show Y, Swain GM (2004) Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal Chem 76:2553–2560

    Article  CAS  Google Scholar 

  15. Honda K, Noda T, Yoshimura M, Nakagawa K, Fujishima A (2004) microstructural heterogeneity for electrochemical activity in polycrystalline diamond thin films observed by electrogenerated chemiluminescence imaging. J Phys Chem B 108(41):16117–16127

    Article  CAS  Google Scholar 

  16. Troupe CE, Drummond IC, Graham C, Grice J, John P, Wilson JIB, Jubber NG, Morrison NA (1998) Diamond-based glucose sensors. Diamond Relat Mater 7:575–580

    Article  CAS  Google Scholar 

  17. Su L, Qiu X, Guo L, Zhang F, Tung C (2004) Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-liking method. Sens Actuators B 99:499–504

    Article  Google Scholar 

  18. Tatsuma T, Mori H, Fujishima A (2000) Electron transfer from diamond electrodes to heme peptide and peroxidise. Anal Chem 72:2919–2924

    Article  CAS  Google Scholar 

  19. Rao TN, Yagi I, Miwa T, Tryk DA, Fujishima A (1999) Electrochemical oxidation of NADH at highly boron-doped diamond electrodes. Anal Chem 71:2506–2511

    Article  CAS  Google Scholar 

  20. Zhou YL, Zhi JF (2006) The application of boron-doped diamond electrodes in amperometric biosensors. Electrochem Commun 8:1811

    Article  CAS  Google Scholar 

  21. Iwuoha EI, de Villaverde DS, Garcia NP, Smyth MR, Pingarront JM (1997) Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidise immobilised on a platinum electrode modified with an electrosynthetic polyaniline film. Biosens Bioelectron 12(8):749–761

    Article  CAS  Google Scholar 

  22. Kazimierska E, Muchindu M, Morrin A, Iwuoha EI, Smyth MR, Killard AJ (2009) The fabrication of structurally multiordered polyaniline films and their application in electrochemical sensing and biosensing. Electroanalysis 21(3–5):595–603

    Article  CAS  Google Scholar 

  23. Al-Ahmed A, Ndangili P, Jahed N, Baker PGL, Iwuoha EI (2009) Polyester sulphonic acid interstitial nanocomposite platform for peroxide biosensor. Sensors 9:9965

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla Baker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangombo, Z.A., Baker, P., Iwuoha, E. et al. Tyrosinase biosensor based on a boron-doped diamond electrode modified with a polyaniline-poly(vinyl sulfonate) composite film. Microchim Acta 170, 267–273 (2010). https://doi.org/10.1007/s00604-010-0378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0378-1

Keywords

Navigation