Skip to main content
Log in

Synthesis hexagonal ß-Ni(OH)2 nanosheets for use in electrochemistry sensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Hexagonal β-Ni(OH)2 nanosheets were synthesized by a simple template- and surfactant-free hydrothermal approach. They were characterized by scanning electron microscopy, X-ray powder diffraction, and thermal gravimetric analysis. The nanosheets were incorporated, along with chitosan, into an amperometric sensor which displayed a good performance in terms of detection of hydrogen peroxide. The linear range is from 5.0 µM to 0.145 mM, the sensitivity is 24.76 µA mM−1, the detection limit is 0.5 µM, and the response time is <5 s. The sensor was successfully applied to detect pyrocatechol (PC) and hydroquinone (HQ) via cyclic voltammetry and differential pulse voltammetry and also enabled simultaneous determination of both PC and HQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128

    Article  CAS  Google Scholar 

  2. Zayats M, Katz E, Baron R, Willner I (2005) Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted Biocatalyst. J Am Chem Soc 127:2400

    Article  Google Scholar 

  3. Li ZF, Chen JH, Li W, Chen K, Nie LH, Yao SZ (2007) Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes. J Electroanal Chem 603:59

    Article  CAS  Google Scholar 

  4. Lin YH, Cui XL, Li LY (2005) Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochem Commun 7:166

    Article  CAS  Google Scholar 

  5. Ricci F, Amine A, Tuta CS, Ciucu AA, Lucarelli F, Palleschi G, Moscone D (2003) Prussian blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability. Anal Chim Acta 485:111

    Article  CAS  Google Scholar 

  6. Lu Q, Zhou T, Hu SS (2007) Direct electrochemistry of hemoglobin in PHEA and its catalysis to H2O2. Biosens Bioelectron 22:899

    Article  CAS  Google Scholar 

  7. French HM, Henerson MJ, Hillman AR, Vieil E (2001) Ion and solvent transfer discrimination at a nickel hydroxide film exposed to LiOH by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) techniques. J Electroanal Chem 500:192

    Article  CAS  Google Scholar 

  8. Liang ZH, Zhu YJ, Hu XL (2004) β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. J Phys Chem B 108:3488

    Article  CAS  Google Scholar 

  9. Liang JH, Li YD (2003) Synthesis and characterization of Ni(OH)2 single-crystal nanorods. Chem Lett 32:1126

    Article  CAS  Google Scholar 

  10. Coudun C, Hochepied JF (2005) Nickel Hydroxide “stacks of pancakes” obtained by the coupled effect of ammonia and template agent. J Phys Chem B 109:6069

    Article  CAS  Google Scholar 

  11. Cai FS, Zhang GY, Chen J, Gou XL, Liu HK, Dou SX (2004) Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. Angew Chem 116:4308

    Article  Google Scholar 

  12. Ballarin B, Berrettoni M, Carpani I, Scavetta E, Tonelli D (2005) Electrodes modified with an electrosynthesised Ni/Al hydrotalcite as amperometric sensors in flow systems. Anal Chim Acta 538:219

    Article  CAS  Google Scholar 

  13. Li MG, Chen SH, Ni F, Wang YL, Wang L (2008) Layered double hydroxides functionalized with anionic surfactant:Direct electrochemistry and electrocatalysis of hemoglobin. Electrochim Acta 53:7255

    Article  CAS  Google Scholar 

  14. Matsubara C, Kawamoto N, Takamura K (1992) Oxo [5, 10, 15, 20—tetra (4-pyridyl) porphyrinato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781

    Article  CAS  Google Scholar 

  15. Nakashima K, Maki K, Kawaguchi S, Akiyama S, Tsukamoto Y, Kazuhiro I (1991) Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2, 4, 6, 8-tetrathiomorpholinopyrimido[5, 4-d]-pyrimidine as a fluorescent component. Anal Sci 7:709

    Article  CAS  Google Scholar 

  16. Jia JB (2008) Hydrogen peroxide biosensor based on horseradish peroxidaseAu nanoparticles at a viologen grafted glassy carbon electrode. Microchim Acta 163:237

    Article  CAS  Google Scholar 

  17. Muresan L, Turdean GL, Popescu IC (2008) Rhodium stabilized Prussian Blue-modified graphite electrodes for H2O2 amperometric detection. J Appl Electrochem 38:349

    Article  CAS  Google Scholar 

  18. Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C, Tang HQ (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165:299

    Article  CAS  Google Scholar 

  19. Wittig J, Wittermer S, Viet M (2001) Validated method for the determination of hydroquinone in human urine by high-performance liquid chromatography—coulometric-array detection. J Chromatogr B 761:12

    Google Scholar 

  20. Chen GN, Liu JS, Duan JP, Chen HQ (2000) Coulometric detector based on porous carbon felt working electrode for flow injection analysis. Talanta 53:651

    Article  CAS  Google Scholar 

  21. Zhou JX, Wang EK (1992) Liquid chromatography amperometric detection of catechol, resorcinol, and hydroquinone with a copper-based chemically modified electrode. Electroanalysis 4:183

    Article  CAS  Google Scholar 

  22. Tsai YC, Chiu CC (2007) Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensor Actuators B Chem 125:10

    Article  Google Scholar 

  23. Zhang XJ, Wang GF, Liu XW, Wu JJ, Li M, Gu J, Liu H, Fang B (2008) Seed-mediated growth method for epitaxial array of CuO nanowires on surface of Cu nanostructures and its application as a glucose sensor. J Phys Chem C 112:16845

    Article  CAS  Google Scholar 

  24. Ai HH, Huang XT, Zhu ZH, Liu JP, Chi QB, Li YY, Li ZK, Ji XX (2008) A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan. Biosens Bioelectron 24:1048

    Article  CAS  Google Scholar 

  25. Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B (1997) Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens Bioelectron 12:29

    Article  CAS  Google Scholar 

  26. Sun JG, Wang GF, Jiao SF, Yu Y, Fang B (2007) Voltammetric studies of La(OH)3 nanoparticles modified glassy carbon electrode and its application for the simultaneous determination of o-benzenediol and p-benzenediol. Chinese J Anal Chem 3:335

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Educational Department of Anhui Province (No. KJ2008B167), and the National Natural Science Foundation of China (No.20675001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Fang or Xiaojun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2018 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, B., Gu, A., Wang, G. et al. Synthesis hexagonal ß-Ni(OH)2 nanosheets for use in electrochemistry sensors. Microchim Acta 167, 47 (2009). https://doi.org/10.1007/s00604-009-0213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-009-0213-8

Keywords

Navigation