Skip to main content
Log in

Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the fabrication and characterization of biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging. The anti-cancer antigen 19-9 monoclonal antibody (a cancer-targeting antibody) was conjugated onto the magnetic contrast agents in an effort to detect pancreatic tumor. The structure, size, morphology and magnetic property of the biofunctional magnetic nanoparticles are characterized systematically by means of transmission electron microscopy and X-ray diffractometry. Furthermore, the interaction between the nanoparticles and pancreas cancers cells are investigated by atomic force microscope and transmission electron microscopy. Magnetic resonance imaging demonstrates that the conjugated nanoparticles can effectively target cancer cells both in vitro and in vivo, suggesting that they potentially can be used as contrast agents for magnetic resonance imaging of pancreas cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu EX, Tang H, Jensen JH (2004) Applications of superparamagnetic iron oxide nanoparticles in animal studies—Review. NMR Biomed 17:478

    Article  Google Scholar 

  2. Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319

    Article  CAS  Google Scholar 

  3. Neuberger T, Schöpf B, Hofmann H, Hofmann M, von-Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. Magn Magn Mater 293:483

    Article  CAS  Google Scholar 

  4. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410

    Article  CAS  Google Scholar 

  5. Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci: Mater Med 15:493

    Article  CAS  Google Scholar 

  6. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticels in a rodent model. Radiology 214:568

    CAS  Google Scholar 

  7. Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjugate Chem 10:186

    Article  CAS  Google Scholar 

  8. Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11:996

    Article  Google Scholar 

  9. Tsourkas A, Shinde-Patil VR, Kelly KA, Patel P, Wolley A, Allport JR, Weissleder R (2005) In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjugate Chem 16:576

    Article  CAS  Google Scholar 

  10. Baghi M, Mack MG, Hambek M, Rieger J, Vogl T, Gstoettner W, Knecht R (2005) The efficacy of MRI with ultrasmall superparamagnetic iron oxide particles (USPIO) in head and neck cancers. Anticancer Res 25:3665

    Google Scholar 

  11. Martina MS, Fortin JP, Menager C, Clement O, Barratt G, Grabielle-Madelmont C, Gazeau F, Cabuil V, Lesieur SJ (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Am Chem Soc 127:10676

    Article  CAS  Google Scholar 

  12. Blasberg RG (2003) Molecular imaging and cancer. Mol Cancer Ther 2:335

    CAS  Google Scholar 

  13. Artemov DJ (2003) Molecular magnetic resonance imaging with targeted contrast agents. Cell Biochem 90:518

    Article  CAS  Google Scholar 

  14. Kroft LJ, de-Roos A (1999) Blood pool contrast agents for cardiovascular MR imaging. Magn Reson Imaging 10:395

    Article  CAS  Google Scholar 

  15. Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physico-chemical characteristics and clinical applications. Drug Targeting 6:167

    Article  CAS  Google Scholar 

  16. Bellin MF, Beigelman C, Precetti-Morel S (2000) Iron oxide-enhanced MR lymphography: initial experience. Eur J Radiol 34:257

    Article  CAS  Google Scholar 

  17. Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E, Maggioni F (2002) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16:394

    Article  Google Scholar 

  18. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838

    Article  Google Scholar 

  19. Kaim AH, Wischer T, O’Reilly T, Jundt G, Frohlich J, von-Schulthess GK, Allegrini PR (2002) MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats. Radiology 225:808

    Article  Google Scholar 

  20. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661

    Article  CAS  Google Scholar 

  21. Benderbous S, Corot C, Jacobs P, Bonnemain B (1996) Superparamagnetic agents: physicochemical characteristics and preclinical imaging evaluation. Acad Radiol 3:292

    Article  Google Scholar 

  22. Moeser GD, Roach KA, Green WH, Laibinis PE, Hatton TA (2001) Waterbased magnetic fluids as extractants for synthetic organic compounds. Ind Eng Chem Res 41:4739

    Article  Google Scholar 

  23. Mendenhall GD, Geng YP, Hwang J (1996) Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes. Coll Interf Sci 184:519

    Article  CAS  Google Scholar 

  24. Ditsch A, Laibinis PE, Wang DIC, Hatton TA (2005) Controlled clustering and enhanced stability of macromolecule-coated magnetic nanoparticles. Langmuir 21:6006

    Article  CAS  Google Scholar 

  25. Kim DK, Mikhaylova M, Zhang Y, Muhammed M (2003) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15:1617

    Article  CAS  Google Scholar 

  26. Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-macromolecule nanoparticles and their colloidal dispersions. Coll Interf Sci 212:49

    Article  CAS  Google Scholar 

  27. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11

    Article  CAS  Google Scholar 

  28. Xavier M, Ralph W, Lee J (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjugate Chem 17:905

    Article  Google Scholar 

  29. Freeny PC (1988) Radiology of the pancreas: two decades of progress in imaging and intervention. AJR Am J Roentgenol 150:975

    CAS  Google Scholar 

  30. Lutterotti L, Gialanella S (1997) X-ray diffraction characterization of heavily deformed metallic specimens. Acta Matet 46:101

    Article  Google Scholar 

  31. Li XZ, Lin W, Zhou C, Guan TT, Li J, Zhang YH (2007) Preliminary studies of application of CdTe nanocrystals and dextran-Fe3O4 magnetic nanoparticles in sandwich immunoassay. Clin Chim Acta 378:168

    Article  CAS  Google Scholar 

  32. Zhu Z, Grütter P (2004) Imaging, manipulation, and spectroscopic measurements of nanomagnets by magnetic force microscopy. MRS Bull 29:457

    CAS  Google Scholar 

  33. Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. Mater Sci: Mater Med 15:493

    Article  CAS  Google Scholar 

  34. Tiefenauer LX, Tschirky A, Kuhne G, Andres RY (1996) In vivo evaluation of magnetite nanoparticles for use as a tumour contrast agent in MRI. Magn Reson Imaging 14:391

    Article  CAS  Google Scholar 

  35. Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11:996

    Article  Google Scholar 

  36. Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, Macfelda K (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843

    Article  CAS  Google Scholar 

  37. Kondo S, Muroya M, Fujii K (1974) The thermal behavior of silanol groups of silica gel as studied by infrared spectroscopy. Bull Chem Soc Jpn 47:553

    Article  CAS  Google Scholar 

  38. Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS, Cheon S (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. Am Chem Soc 127:12387

    Article  CAS  Google Scholar 

  39. Schumann-Giampieri G (1993) Liver contrast media for magnetic resonance imaging. Invest Radiol 28:753

    Article  Google Scholar 

  40. Ferrucci JT, Stark DD (1990) Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am J Roentgenol 155:943

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the LADP-SHNU (DZL806), National Nature Science Foundation of China (Nos. 20573075, 20773088), the National 863 Program(2006AA03Z319), the National Basic Research Program of China(2008CB617504), the Shanghai Science and Technology Committee (No. 07DZ22303 No. 0752 nm028 No. 06SU07003), and Shanghai Key Laboratory of Rare-earth Functional Materials (07dz22303). The authors thank Prof. M. Y. Gao for his assistance with MRI of nude mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebai Shen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material

(DOC 505 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M., Qiao, Z., Miao, F. et al. Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer. Microchim Acta 167, 27 (2009). https://doi.org/10.1007/s00604-009-0210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-009-0210-y

Keywords

Navigation