Skip to main content
Log in

Electrochemiluminescent sensor for the detection of DNA hybridization using stem-loop structure DNA as capture probes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemiluminescent (ECL) sensor is presented for the detection of DNA hybridization using single-strand DNA with stem–loop structure as capture probes. After the probe DNA was immobilized on an gold electrode, labeled with ruthenium complex, and formed a stem–loop structure, this sensor produced a high ECL signal. On hybridization with the complementary target DNA, the ECL intensity significantly decreased. Different from other DNA sensors, in which the probe DNA was labeled in advance with a signalling molecule and then assembled onto an electrode, the approach presented here relies on assembling first, and then labelling with ruthenium complex, without the complicated purifying processes after the probe DNA was labeled. The ECL intensity versus the concentration of the target DNA was linear in the range from 1.0 pM to 0.1 µM with a detection limit of 0.5 pM. The biosensor conceivably can be used as a general approach for the ECL detection of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  2. Zhou X, Zhou J (2004) Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal Chem 76:5302–5312

    Article  CAS  Google Scholar 

  3. Liu XJ, Tan WH (1999) A fiber-optic evanescent wave DNA biosensor based on novel molecular beacon. Anal Chem 71:5054–5059

    Article  CAS  Google Scholar 

  4. Mallard F, Marchand G, Ginot F, Campagnolo R (2005) Opto-electronic DNA chip: high performance chip reading with an all-electric interface. Biosens Bioelectron 20:1813–1820

    Article  CAS  Google Scholar 

  5. Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou FM (2006) Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem 354:220–228

    Article  CAS  Google Scholar 

  6. Xie H, Zhang CY, Gao ZQ (2004) Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Anal Chem 76:1611–1617

    Article  CAS  Google Scholar 

  7. Wang J, Li JH, Baca AJ, Hu JB, Zhou FM, Yan W, Pang DW (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  CAS  Google Scholar 

  8. Fan CH, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134–9137

    Article  CAS  Google Scholar 

  9. Lai RY, Lagally ET, Lee SH, Soh HT, Plaxco KW, Heeger AJ (2006) Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. Proc Natl Acad Sci USA 203:4017–4021

    Article  CAS  Google Scholar 

  10. Liu G, Wan Y, Gau V, Zhang J, Wang LH, Song SP, Fan CH (2008) An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. J Am Chem Soc 130:6820–6825

    Article  CAS  Google Scholar 

  11. Jin Y, Yao X, Liu Q, Li J (2007) Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosens Bioelectron 22:1126–1130

    Article  CAS  Google Scholar 

  12. Peng H, Soeller C, Vigar NA, Caprio V, Travas-Sejdic J (2007) Label-free detection of DNA hybridization based on a novel functionalized conducting polymer. Biosens Bioelectron 22:1868–1873

    Article  CAS  Google Scholar 

  13. Ricci F, Plaxco KW (2008) E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchim Acta 163:149–155

    Article  CAS  Google Scholar 

  14. Yang ML, Liu CZ, Qian KJ, He PG, Fang YZ (2002) Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst 127:1267–1271

    Article  CAS  Google Scholar 

  15. Miao WJ, Bard AJ (2004) Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy) 3]2+-containing microspheres. Anal Chem 76:5379–5386

    Article  CAS  Google Scholar 

  16. Miao WJ, Bard AJ (2003) Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and c-reactive protein on Au(111) electrodes using tris(2, 2′-bipyridyl) ruthenium(II) labels. Anal Chem 75:5825–5834

    Article  CAS  Google Scholar 

  17. Wang H, Zhang CX, Li Y, Qi HL (2006) Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal Chim Acta 575:205–211

    Article  CAS  Google Scholar 

  18. Li Y, Qi HL, Fang F, Zhang CX (2007) Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2, 2′-bipyridyl) ruthenium derivative tags. Talanta 72:1704–1709

    Article  CAS  Google Scholar 

  19. Zhang J, Qi HL, Li Y, Yang J, Gao Q, Zhang CX (2008) Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthemium complex. Anal Chem 80:2888–2894

    Article  CAS  Google Scholar 

  20. Li Y, Qi HL, Yang J, Zhang CX (2009) Detection of DNA immobilized on bare gold electrodes and gold nanoparticle-modified electrodes via electrogenerated chemiluminescence using a ruthenium complex as a tag. Microchim Acta 164:69–76

    Article  CAS  Google Scholar 

  21. Hook F, Ray A, Norden B, Kasemo B (2001) Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 17:8305–8312

    Article  CAS  Google Scholar 

  22. Su XD, Robelek R, Wu YJ, Wang GY, Knoll W (2004) Detection of point mutation and insertion mutations in DNA using QCM and MutS, a mutation binding protein. Anal Chem 76:489–494

    Article  CAS  Google Scholar 

  23. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluorescence upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  24. Tyagi S, Kramer FR (1999) hermodynamic basis of the enhanced specificity of molecular beacons. Proc Natl Acad Sci USA 96:6171–6176

    Article  Google Scholar 

  25. Kang Y, Feng KJ, Chen JW, Jiang JH, Shen GL, Yu RQ (2008) Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry 73:76–81

    Article  CAS  Google Scholar 

  26. URL: http://www.probes.com/media/pis/mp00143.pdf.

  27. Steel AB, Herne TM, Tarlov MJ (1998) Electrochemical quantitation of DNA immobilized on gold. Anal Chem 70:4670–4677

    Article  CAS  Google Scholar 

  28. Shen L, Chen Z, Li YH, Jing P, Xie SB, He SL, He PL, Shao YH (2007) A chronocoulometric aptamer sensor for adenosine monophosphate. Chem Comm 21:2169–2171

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  30. Bertolino C, MacSweeney M, Tobin J, O’Neill B, Sheehanb MM, Coluccia S, Berney H (2005) A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridization. Biosens Bioelectron 21:565–573

    Article  CAS  Google Scholar 

  31. Wang HY, Zhang XL, Tan ZA, Yao W, Wang L (2008) Enhanced electrogenerated chemiluminescence of Ru(bpy) 2+3 /TPrA system on CdS nanocrystals film. Electrochem Commun 10:170–174

    Article  CAS  Google Scholar 

  32. Zhang LH, Dong SJ (2006) Electrogenerated chemiluminescence sensors using Ru(bpy) 2+3 doped in silica nanoparticles. Anal Chem 78:5119–5123

    Article  CAS  Google Scholar 

  33. Zu YB, Bard AJ (2001) Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2, 2′-bipyridyl) ruthenium(II)/tripropylamine system on electrode surface hydrophobicity. Anal Chem 73:3960–3964

    Article  CAS  Google Scholar 

  34. Du H, Strobhsahl CM, Camera J, Miller BL, Krauss TD (2005) Sensitivity and specificity of metal surface-immobilized ‘molecular beacon’ biosensors. J Am Chem Soc 127:7932–7940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Natural Science Foundation of China (No. 20575001, 20705002) and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, W., Wang, L., Wang, H. et al. Electrochemiluminescent sensor for the detection of DNA hybridization using stem-loop structure DNA as capture probes. Microchim Acta 165, 407–413 (2009). https://doi.org/10.1007/s00604-009-0152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0152-4

Keywords

Navigation