Skip to main content
Log in

Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor based on carbon nanotubes (CNTs)-ionic liquid (IL) composite has been developed for the simultaneous determination of serotonin (5-HT) and dopamine (DA). The CNTs-IL composite modified electrode presents excellent selectivity and sensitivity towards 5-HT and DA and eliminates the interference of ascorbic acid. The parameters which influence the determination of 5-HT and DA have been investigated. Under optimized conditions, linear calibration graphs were obtained in the range from 20 nM to 7 µM, with a detection of limit of 8 nM, for 5-HT, and in the range from 0.1 to 12 µM, with a detection of limit of 60 nM, for DA. The electrode has been applied to the assay of 5-HT and DA in human blood serum with good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. http://www.sfn.org/index.cfm?pagename=brainbriefings_parkinsonsanddopamine

  2. Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors: Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51:215

    Article  CAS  Google Scholar 

  3. Gu H, Xu Y, Peng W, Li G, Chen H (2004) A Novel Method for Separating the Anodic Voltammetric Peaks for the determination of dopamine in the presence of ascorbic acid. Microchim Acta 146:223

    Article  CAS  Google Scholar 

  4. Salimi A, Abdi K, Khayatian G (2004) Amperometric Detection of Dopamine in the Presence of Ascorbic Acid Using a Nafion Coated Glassy Carbon Electrode Modified with Catechin Hydrate as a Natural Antioxidant. Microchim Acta 144:161

    Article  CAS  Google Scholar 

  5. Zhang L (2008) Covalent modification of glassy carbon electrode with cysteine Acid Using a Nafion Coated Glassy Carbon Electrode Modified with Catechin Hydrate as a Natural Antioxidant. Microchim Acta 161:191

    Article  CAS  Google Scholar 

  6. Zhang Y, Jin G, Yang Z, Zhao H (2004) Determination of Dopamine in the Presence of Ascorbic Acid Using a Poly(Amidosulfonic Acid) Modified Glassy Carbon Electrode. Microchim Acta 147:225

    CAS  Google Scholar 

  7. Lai G, Zhang H, Han D (2008) Electrocatalytic oxidation and voltammetric determination of dopamine at a Nafion/ carbon-coated iron nanoparticles-chitosan composite film modified electrode. Microchimica Acta 160:233

    Article  CAS  Google Scholar 

  8. Chen W, Lin X, Huang L, Luo H (2005) Electrochemical Characterization of Polymerized Cresol Red Film Modified Glassy Carbon Electrode and Separation of Electrocatalytic Responses for Ascorbic Acid and Dopamine Oxidation. Microchim Acta 151:101

    Article  CAS  Google Scholar 

  9. Wu K, Hu S (2004) Electrochemical Study and Selective Determination of Dopamine at a Multi-Wall Carbon Nanotube-Nafion Film Coated Glassy Carbon Electrode. Microchim Acta 144:131

    Article  CAS  Google Scholar 

  10. Sun Y, Wang S (2006) Simultaneous Determination of Dopamine and Ascorbic Acid at a Triazole Self-Assembled Monolayer-Modified Gold Electrode. Microchim Acta 154:115

    Article  CAS  Google Scholar 

  11. Rouhollahi A, Rajabzadeh R, Ghasemi J (2007) Simultaneous determination of dopamine and ascorbic acid by linear sweep voltammetry along with chemometrics using a glassy carbon electrode. Microchim Acta 157:139

    Article  CAS  Google Scholar 

  12. Huang PF, Wang L, Bai JY, Wang HJ, Zhao YQ, di Fan S (2007) Simultaneous electrochemical detection of dopamine and ascorbic acid at a poly(p-toluene sulfonic acid) modified electrode. Microchim Acta 157:47

    Article  Google Scholar 

  13. Wu K, Fei J, Hu S (2003) Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal Biochem 318:100

    Article  CAS  Google Scholar 

  14. Wang Z, Liang Q, Wang Y, Luo G (2003) Carbon nanotube-intercalated graphite eectrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540:129

    Article  CAS  Google Scholar 

  15. Li Y, Huang X, Chen Y, Wang L, Lin X (2009) Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchim Acta 164:107

    Article  CAS  Google Scholar 

  16. Li J, Lin X (2007) Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensor Actuat B 124:486

    Article  Google Scholar 

  17. Oni J, Nyokong T (2001) Simultaneous voltammetric determination of dopamine and serotonin on carbon paste electrodes modified with iron(II) phthalocyanine complexes. Anal Chim Acta 434:9

    Article  CAS  Google Scholar 

  18. Selvaraju T, Ramaraj R (2003) Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode. Electrochem Commun 5:667

    Article  CAS  Google Scholar 

  19. Goyal RN, Gupta VK, Oyamab M, Bachheti N (2007) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: Application in pharmaceutical formulations and biological fluids. Talanta 72:976

    Article  CAS  Google Scholar 

  20. Jiang X, Lin X (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537:145

    Article  CAS  Google Scholar 

  21. Lu L, Wang S, lin X (2004) Attachment of DNA to the carbon fiber microelectrode via gold nanoparticles for simultaneous determination of dopamine and serotonin. Anal sci 20:1131

    Article  CAS  Google Scholar 

  22. Pennington JM, Millar J, Jones CPL, Owesson CA, McLaughlina DP, Stamford JA (2004) Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre ‘dident’ microelectrodes. J Neurosci Meth 140:5

    Article  CAS  Google Scholar 

  23. Wasserscheid P, Welton T (2002) Ionic Liquids in Synthesis. Wiley-VCH Verlag, pp 2

  24. Di W, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal chim acta 607:126

    Article  Google Scholar 

  25. Nishida T, Tashiro Y, Yamamota M (2003) Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluor Chem 120:135

    Article  CAS  Google Scholar 

  26. Lewandowski A, Galinski M (2004) Carbon-ionic liquid double-layer capacitors. J Phys Chem Solid 65:281

    Article  CAS  Google Scholar 

  27. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452

    Article  CAS  Google Scholar 

  28. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25:480

    Article  CAS  Google Scholar 

  29. Pumera M, Śanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensor Actuat B 123:1195

    Article  Google Scholar 

  30. Vamvakaki V, Chaniotakis NA (2007) Carbon nanostructures as transducers in biosensors. Sensor Actuat B 126:193

    Article  Google Scholar 

  31. Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121

    Article  CAS  Google Scholar 

  32. Tao W, Pan D, Liu Q, Yao S, Nie Z, Hanb B (2006) Optical and Bioelectrochemical Characterization of Water-Miscible Ionic Liquids Based Composites of Multiwalled Carbon Nanotubes. Electroanalysis 18:1681

    Article  CAS  Google Scholar 

  33. Li J, Zhao F, Zeng B (2007) Characterization of a graphite powder-ionic liquid paste coated gold electrode, and a method for voltammetric determination of promethazine. Microchim Acta 157:27

    Article  CAS  Google Scholar 

  34. Xiao F, Zhao F, Li J, Liu L, Zeng B (2008) Characterization of hydrophobic ionic liquid-carbon nanotubes-gold nanoparticles composite film coated electrode and the simultaneous voltammetric determination of guanine and adenine. Electrochim Acta 53:7781

    Article  CAS  Google Scholar 

  35. Zhang Y, She Y, Li J, Niu L, Dong S, Ivaska A (2005) Electrochemical Functionalization of Single-Walled Carbon Nanotubes in Large Quantities at a Room-Temperature Ionic Liquid Supported Three-Dimensional Network Electrode. Langmuir 21:4797

    Article  CAS  Google Scholar 

  36. Takanori Fukushima (2003) Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science 300:2072

    Article  Google Scholar 

  37. Jia F, Shana C, Li F, Niu L (2008) Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing. Biosens Bioelectron 24:951

    Article  Google Scholar 

  38. Zhao Y, Liu H, Kou Y, LM Zhu Z, Zhuang Q (2007) Structural and characteristic analysis of carbon nanotubes-ionic liquid gel biosensor. Electrochem Commun 9:2457

    Article  CAS  Google Scholar 

  39. Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66:51

    Article  CAS  Google Scholar 

  40. Mustafa M, Kachoosangi RT, Xiao L, Russell A, Comptonb RG (2008) Ionic liquid-carbon composite glucose biosensor. Biosens Bioelectron 24:87

    Article  Google Scholar 

  41. Li J, Zhao F, Zeng B (2007) Characterization of a graphite powder-ionic liquid paste coated gold electrode, and a method for voltammetric determination of promethazine. Microchim Acta 157:27

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Key Project of Chinese Ministry of Education (No. 206104), Hunan Provincial Natural Science Foundation of China, and the Open Project Program of Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Fei.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supporting Section (DOC 1995 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Fei, J., Hou, J. et al. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165, 373–379 (2009). https://doi.org/10.1007/s00604-009-0147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0147-1

Keywords

Navigation