Skip to main content
Log in

Electrocatalytic oxidation of hydrazine at a chromium hexacyanoferrate/single-walled carbon nanotube modified glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel route is presented for the fabrication of chromium (III) hexacyanoferrate(II) (Crhf) nanoparticles attached to single-walled carbon nanotubes (SWNTs) modified glassy carbon electrodes (GCE). The morphological character of the Crhf/SWNTs nanocomposites was examined using scanning electron microscopy (SEM), transmission electron microscopy, UV-Vis spectroscopy and Fourier transform infrared spectrometry. The performance of the Crhf/SWNTs nanocomposite modified electrode was characterized using cyclic voltammetry and amperometry. The electrode exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. Moreover it showed a wide linear working range (0.5–500 μM hydrazine), with a detection limit of 0.45 μM estimated at a signal to noise ratio of 3. Response time is fast (about 3 s) and the electrode exhibited good reproducibility and long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES et al (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for the discovery of better electrocatalysts. Science 280:1735

    Article  CAS  Google Scholar 

  2. Hogarth MP, Hards GA (1996) Direct methanol fuel cell. Platinum Met Rev 40:150

    CAS  Google Scholar 

  3. Ren XM, Wilson MS, Gottesfeld S (1996) High performance direct methanol polymer electrolyte fuel cells. J Electrochem Soc 143:12

    Article  Google Scholar 

  4. Deivaraj TC, Chen WX, Lee JY (2003) Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J Mater Chem 13:2555

    Article  CAS  Google Scholar 

  5. Yang CC, Kumara AS, Kuo MC, Chien SH, Zena JM (2005) Copper–palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Anal Chim Acta 554:66

    Article  CAS  Google Scholar 

  6. Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: Reusable hydrazine amperometric sensor. J Electroanal Chem 592:139

    Article  CAS  Google Scholar 

  7. Revenga-Parra M, Lorenzo E, Pariente F (2005) Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: application to the construction of hydrazine sensors. Sens Actuators B 107:678

    Article  Google Scholar 

  8. Colonnese R, Ianniello RM (1989) Determination of Hydrazine in Polyvinylpyrrolidone by Derivatization and Square Wave Voltammetry. Microchim Acta 2:7

    Article  CAS  Google Scholar 

  9. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125:886

    Article  CAS  Google Scholar 

  10. Itaya K, Ataka T, Toshima S (1982) Electrochemical preparation of a Prussian blue analog: iron-ruthenium cyanide. J Am Chem Soc 104:3751

    Article  CAS  Google Scholar 

  11. Ghosh PK, Bard AJ (1983) Clay-Modified Electrodes. J Am Chem Soc 105:5691

    Article  CAS  Google Scholar 

  12. Murray CG, Nowak RJ, Rolison DR (1984) Electrogenerated coatings containing zeolites. J Electronanal Chem 164:205

    Article  CAS  Google Scholar 

  13. Kulesza PJ, Faulkner LR (1988) Electrocatalysis at a novel electrode coating of nonstoichiometric tungsten (VI, V) oxide aggregates. J Am Chem Soc 110:4905

    Article  CAS  Google Scholar 

  14. Zagal JH, Momoz E, Ureta-Zanartu S (1982) Catalytic electro-oxidation of hydrazine on phthalocyanines deposited on graphite electrodes. Electrochim Acta 27:1373

    Article  CAS  Google Scholar 

  15. Collman JP, Deniserich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102:6027

    Article  CAS  Google Scholar 

  16. Opekar F (1989) Detection of hydrogen in air with a detector containing a nafion membrane metallized on both sides. J Electroanal Chem 260:451

    Article  CAS  Google Scholar 

  17. Karyakin AA (2001) Prussian blue and its analogues electrochemistry and analytical applications. Electroanalysis 13:813

    Article  CAS  Google Scholar 

  18. Kertesz V, Dunn NM, Berkel GJV (2002) Electrochemistry—electrospray-mass spectrometry study of cesium uptake in nickel hexacyanoferrate films. Electrochim Acta 47:1035

    Article  CAS  Google Scholar 

  19. Eftekhari A (2003) Electrocatalysis and amperometric detection of hydrogen peroxide at an aluminum microelectrode modified with cobalt hexacyanoferrate fillm. Microchim Acta 141:15

    Article  CAS  Google Scholar 

  20. Sheng QL, Shen Y, Zhang HF, Zheng JB (2008) Neodymium (III) hexacyanoferrate (II) nanoparticles induced by enzymatic reaction and their use in biosensing of glucose. Electrochimica Acta 53:4687

    Article  CAS  Google Scholar 

  21. Zeng JX, Wei WZ, Liu XY, Wang Y, Luo GM (2008) A simple method to fabricate a Prussian blue nanoparticles/carbon nanotubes/poly(1,2-diaminobenzene) based glucose biosensor. Microchim Acta 160:261

    Article  CAS  Google Scholar 

  22. Mu YY, Liang H, Hu J, Jiang L, Wan LJ (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109:22212

    Article  CAS  Google Scholar 

  23. Xu CL, Chen JF, Cui Y, Han QY, Choo H, Liaw PK, Wu DH (2006) Influence of the surface treatment on the deposition of platinum nanoparticles on the carbon nanotubes. Adv Eng Mater 8:73

    Article  CAS  Google Scholar 

  24. Zhao Y, Fan L, Zhong HZ, Li YF (2007) Electrodeposition and electrocatalytic properties of platinum nanoparticles on multi-walled carbon nanotubes: effect of the deposition conditions. Microchim Acta 158:327

    Article  CAS  Google Scholar 

  25. Yan JY, Song HH, Yang SB, Yan JD, Chen XH (2008) Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochimica Acta 53:6351

    Article  CAS  Google Scholar 

  26. Ellis D, Eckhoff M, Neff VD (1981) Electrochromism in the mixed-Valence hexacyanides.1 Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem 85:1225

    Article  CAS  Google Scholar 

  27. Wu P, Lu S, Cai CX (2004) Electrochemical preparation and characterization of a samarium hexacyanoferrate modified electrode. J Electroanal Chem 569:143

    Article  CAS  Google Scholar 

  28. Zhang YJ, Wen Y, Liu Y, Li D, Li JH (2004) Functionalization of single-walled carbon nanotubeswith Prussian blue. Electrochem Commun 6:1180

    Article  CAS  Google Scholar 

  29. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res. 19:162

    Article  CAS  Google Scholar 

  30. Lin MS, Tseng TF, Shih WC (1998) Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide. Analyst January 123:159

    Article  CAS  Google Scholar 

  31. Brown DB, Shriver DF, Schwartz LH (1968) Solid-state reactions of iron (II) hexacyanochromate(III). Inorg Chem 7:77

    Article  CAS  Google Scholar 

  32. Golabi SM, Zare HR (1999) Electrocatalytic oxidation of hydrazine at a chlorogenic acid (CGA) modified glassy carbon electrode. J Electroanal Chem 465:168

    Article  CAS  Google Scholar 

  33. Zare HR, Nasirrizadeh N (2007) Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine. Electrochim Acta 52:4153

    Article  CAS  Google Scholar 

  34. Umar A, Rahman MM, Kim SH, Hahn YB (2008) Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun 2:166

    Article  Google Scholar 

Download references

Acknowledgements

We appreciated the support of the National Natural Science Foundation of China (No.20675001), Science Foundation of Education Office of Anhui Province (No.2006kj145B) and Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supp Table 1

Literatures for electrocatalytic detection of hydrazine based on different modified electrode materials. (DOC 28.5 KB)

Supplementary Figure 1

SEM images of (A) pure SWNTs film and (B) Crhf/SWNTs nanocomposites. (DOC 173 KB)

Supplementary Figure 2

The corresponding histograms of size distribution of nanoparticles Crhf. (DOC 32.5 KB)

Supplementary Figure 3

CVs in 0.1 M PBS containinging 0.1 M KCl (pH 3.5), in the absence of hydrazine on (a) bare GCE and (b) Crhf/SWNTs/GCE. (DOC 227 KB)

Supplementary Figure 4

CVs of 5 × 10−5 M hydrazine at: (a) bare GCE; (b) SWNTs/GCE; (c) Crhf/SWNTs/GCE in 0.1 M PBS containing 0.1 M KCl at pH 3.5. Scan rate: 50 mV s−1. (DOC 310 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, B., Shen, R., Zhang, W. et al. Electrocatalytic oxidation of hydrazine at a chromium hexacyanoferrate/single-walled carbon nanotube modified glassy carbon electrode. Microchim Acta 165, 231–236 (2009). https://doi.org/10.1007/s00604-008-0125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0125-z

Keywords

Navigation