Skip to main content
Log in

Electrochemistry of Sc3N@C78 embedded in didodecyldimethylammonium bromide films in aqueous solution

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical behavior of trimetallic nitride clusterfullerene (Sc3N@C78) embedded in films of the cationic surfactant didodecyldimethylammonium bromide (DDAB) on glassy carbon (GC) electrodes in aqueous solution was investigated. Four pairs of reversible redox peaks were observed in the potential range between +0.6 and −0.9 V vs. SCE. Different to the electrochemistry of pristine Sc3N@C78 in organic solution, the first reduction is a one-electron rather than simultaneous two-electron process because of the strong binding between DDA+ and the monoanion of Sc3N@C78. The generated radial monoanion, dianion and trianion of Sc3N@C78 are stable during continuous potential cycling, while some chemical reactions take place when the third anion is further reduced in the films. The cyclic voltammograms of Sc3N@C78/DDAB films checked at different temperatures pointed to strong temperature dependence. The electrochemical processes were also measured in different electrolytes, which showed pronounced anionic dependence and no cathodic dependence on either the cation or anions present. A possible electron-transfer mechanism of a Sc3N@C78/DDAB film was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55

    Article  CAS  Google Scholar 

  2. Olmstead MM, De Bettencourt-Dias A, Duchamp JC, Stevenson S, Marciu D, Dorn HC, Balch AL (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem Int Ed 40:1223

    Article  CAS  Google Scholar 

  3. Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er). J Am Chem Soc 128:6480

    Article  CAS  Google Scholar 

  4. Stevenson S, Stephen RR, Amos TM, Cadorette VR, Reid JE, Phillips JP (2005) Synthesis and purification of a metallic nitride fullerene bisadduct: exploring the reactivity of Gd3N@C80. J Am Chem Soc 127:12776

    Article  CAS  Google Scholar 

  5. Cai T, Xu L, Anderson MR, Ge Z, Zuo T, Wang X, Olmstead MM, Balch AL, Gibson HW, Dorn HC (2006) Structure and enhanced reactivity rates of the D5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128:8581

    Article  CAS  Google Scholar 

  6. Yang S, Dunsch L (2006) Expanding the number of stable isomeric structures of the C80 Cage: A new fullerene Dy3N@C80. Chem Eur J 12:413

    Article  Google Scholar 

  7. Krause M, Wong J, Dunsch L (2005) Expanding the world of endohedral fullerenes-the Tm3N@C2n (39≤n ≤ 43) clusterfullerene family. Chem Eur J 11:706

    Article  CAS  Google Scholar 

  8. Dunsch L, Georgi P, Krause M, Wang C (2003) New clusters in endohedral fullerenes: the metalnitrides. Synth Met 135–136:761

    Google Scholar 

  9. Dunsch L, Krause M, Noack J, Georgi P (2004) Endohedral nitride cluster fullerenes: formation and spectroscopic analysis of L3−x M x N@C2n (0 ≤ x ≤ 3; N = 39, 40). J Phys Chem Sol 65:309

    Article  CAS  Google Scholar 

  10. Krause M, Kuzmany H, Georgi P, Dunsch L, Vietze K, Seifert G (2001) Structure and stability of endohedral fullerene Sc3N@C80: A Raman, infrared, and theoretical analysis. J Chem Phys 115:6596

    Article  CAS  Google Scholar 

  11. Liu S, Sun S (2000) Recent progress in the studies of endohedral metallofullerenes. J Organometallic Chem 599:74

    Article  CAS  Google Scholar 

  12. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y (1993) Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc 115:7918

    Article  CAS  Google Scholar 

  13. Friedman SH, Decamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc 115:6506

    Article  CAS  Google Scholar 

  14. Sijbesma R, Srdanov G, Wudl F, Castoro JA, Wilkins C, Friedman SH, Decamp DL, Kenyon GL (1993) Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc 115:6510

    Article  CAS  Google Scholar 

  15. Nakamura E, Tokuyama H, Yamago S, Shiraki T, Sugiura Y (1996) Biological activity of water-soluble fullerenes. Structural dependence of DNA cleavage, cytotoxicity, and enzyme inhibitory activities including HIV-protease inhibition. Bull Chem Soc Jpn 69:2143

    Article  CAS  Google Scholar 

  16. Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun 663–669

  17. Chiang LY, Upasani RB, Swirczewski JW (1992) Versatile nitronium chemistry for C60 fullerene functionalization. J Am Chem Soc 114:10154

    Article  CAS  Google Scholar 

  18. Li J, Takeuchi A, Ozawa M, Li X, Saigo K, Kitazawa K (1993) C60 fullerol formation catalysed by quaternary ammonium hydroxides. J Chem Soc, Chem Commun 1784–1785

  19. Andersson T, Nilsson K, Sundahl M, Westman G, Wennerstrom O (1992) C60 embedded in cyclodextrin: a water-soluble fullerene. J Chem Soc, Chem Commun 604

  20. Braun T, Buvari-Barcza A, Barcza L, Konkoly-Thege I, Fodor M, Migali B (1994) Mechanochemistry: a novel approach to the synthesis of fullerene compounds. Water soluble buckminsterfullerene -g-cyclodextrin inclusion complexes via a solid-solid reaction. Solid State Ionics 74:47

    Article  CAS  Google Scholar 

  21. Sundahl M, Andersson T, Nilsson K, Wennerstrom O, Westman G (1993) Clusters of C60-fullerene in a water solution containing g-cyclodextrin: A photophysical study. Synth Met 56:3252

    Article  CAS  Google Scholar 

  22. Priyadarsini KI, Mohan H, Tyagi AK, Mittal JP (1994) Inclusion complex of g-cyclodextrin-C60: formation, characterization, and photophysical properties in aqueous solutions. J Phys Chem 98:4756

    Article  CAS  Google Scholar 

  23. Boulas P, Kutner W, Jones MT, Kadish KM (1994) Bucky(basket)ball: stabilization of electrogenerated C60 - radical monoanion in water by means of cyclodextrin inclusion chemistry. J Phys Chem 98:1282

    Article  CAS  Google Scholar 

  24. Samal S, Geckeler KE (2000) Cyclodextrin-fullerenes: a new class of water-soluble fullerenes. Chem Commun 1101–1102

  25. Samal S, Choi B, Geckeler KE (2000) The first water-soluble main-chain polyfullerene. Chem Commun 1373–1374

  26. Hungerbuehler H, Guldi DM, Asmus KD (1993) Incorporation of C60 into artificial lipid membranes. J Am Chem Soc 115:3386

    Article  CAS  Google Scholar 

  27. Bensasson RV, Bienvenue E, Dellinger M, Leach S, Seta P (1994) C60 in model biological systems: a visible-UV absorption study of solvent-dependent parameters and solute aggregation. J Phys Chem 98:3492

    Article  CAS  Google Scholar 

  28. Beeby A, Eastoe J, Heenan RK (1994) Solubilization of C60 in aqueous micellar solution. J Chem Soc, Chem Commun 173

  29. Nakashima N, Tokunaga T, Nonaka Y, Nakanishi T, Murakami H, Sagara T (1998) A fullerene/lipid electrode device. A reversible electron transfer reaction of C60 embedded in a cast film of an artificial ammonium lipid on an electrode in aqueous solution. Angew Chem Int Ed 37:2671

    Article  CAS  Google Scholar 

  30. Nakashima N, Kuriyama T, Tokunaga T, Murakami H, Sagara T (1998) Electrochemistry of a fullerene/ammonium lipid composite film on an electrode in water. Generation of C60 3−. Chem Lett 7:633–634

    Article  Google Scholar 

  31. Zhao Y, Fan L, Zhong H, Li Y (2007) Electrodeposition and electrocatalytic properties of platinum nanoparticles on multi-walled carbon nanotubes: effect of the deposition conditions. Microchim Acta 158:327

    Article  CAS  Google Scholar 

  32. Nakashima N, Nonaka Y, Nakanishi T, Sagara T, Murakami H (1998) A C60-embedded artificial bilayer membrane film electrode device: phase-transition-dependent electrochemistry. J Phys Chem B 102:7328

    Article  CAS  Google Scholar 

  33. Li M, Xu M, Li N, Gu Z, Zhou X (2002) Electrocatalysis of hemoglobin at C70/DDAB films in an aqueous solution. J Phys Chem B 106:4197

    Article  CAS  Google Scholar 

  34. Li M, Li N, Gu Z, Zhou X (2003) Electrocatalysis of some biomacromolecules at C60/DDAB films. Electroanalysis 15:982

    Article  CAS  Google Scholar 

  35. Nakashima N, Sakai M, Murakami H, Sagara T, Wakahara T, Akasaka T (2002) Construction of a metallofullerene La@C82/artificial lipid film-modified electrode device and its electron transfer. J Phys Chem B 106:3523

    Article  CAS  Google Scholar 

  36. Li M, Wang J, Sun B, Li N, Gu Z (2004) Investigation on the electrochemistry of Gd@C82/DDAB films in an aqueous solution. J Electrochem Soc 151:E271

    Article  CAS  Google Scholar 

  37. Zhang L, Chen N, Fan L, Wang C, Yang S (2007) Electrochemistry of Sc3N@C78 and Sc3N@80(I h ): on achieving reversible redox waves of the trimetal nitride endohedral fullerenes. J Electroanal Chem 608:15

    Article  CAS  Google Scholar 

  38. Nakanishi T, Ohwaki H, Tanaka H, Murakami H, Sagara T, Nakashima N (2004) Electrochemical and chemical reduction of fullerenes C60 and C70 embedded in cast films of artificial lipids in aqueous media. J Phys Chem B 108:7754

    Article  CAS  Google Scholar 

  39. Nakanishi T, Murakami H, Sagara T, Nakashima N (1999) Aqueous electrochemistry of a C60-bearing artificial lipid bilayer membrane film immobilized on an electrode surface: thermodynamics for the binding of tetraalkylammonium ion to the fullerene anion. J Phys Chem B 103:304

    Article  CAS  Google Scholar 

  40. Yang S, Zalibera M, Rapta P, Dunsch L (2006) Charge-induced reversible rearrangement of endohedral fullerenes: electrochemistry of tridysprosium nitride clusterfullerenes Dy3N@C2n (2n = 78, 80). Chem Eur J 12:7848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by National Natural Science Foundation of China (20473014, 20773015), the Major State Basic Research Development Programs (2004CB719903) and NNSFC-RGC administrated by the UGC of Hong Kong (N_HKUST604/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louzhen Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 364 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., Zhang, L., Chen, N. et al. Electrochemistry of Sc3N@C78 embedded in didodecyldimethylammonium bromide films in aqueous solution. Microchim Acta 165, 45–52 (2009). https://doi.org/10.1007/s00604-008-0095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0095-1

Keywords

Navigation