Skip to main content
Log in

Enhancing the electrochemical properties of the p-type conductive polymer on the surface of the new synthesized 2-(pyridin-3-ylmethylene) hydrazine-1-carbothioamide-modified electrode: computational and electrochemical study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Herein, 2-(pyridin-3-ylmethylene)hydrazine-1-carbothioamide(3PHCT)was first fabricated through a chemical method, and subsequently, polyorthoaminophenol (POAP)/3PHCT films were prepared using electropolymerization of POAP, carried out in the presence of the as-prepared 3PHCT to serve as the active electrode for electrochemical application. Geometry optimization and calculations of structural and electronic/vibrational properties of the 3PHCT system are studied (based on the quantum atom-in-molecule theory, QTAIM). In addition, the local intra-molecular electron density, and its Laplacian, and, thus, intra-molecular virial forces, of this molecule system are calculated. These results show that the oxygen and sulfur atoms play domain role in intra-molecular charge and energy transfer in this molecular system. In addition, based on the QTAIM, it is predicted that a single electrochemical molecular system can be grouped into p-type-like and n-type-like sections, and would be good candidate to reduce intra-molecular repulsion of the bipolaron during electrochemical polymerization of POAP. Galvanostatic charge–discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy, were conducted to characterize the prepared composite films and investigate the performance of the system, respectively. In this study, novel POAP/3PHCT are presented for electrochemical redox capacitors possessing the merits of high active surface area, stability in an aqueous electrolyte and ease of synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Barbero, J.J. Silber, L. Sereno, J. Electroanal. Chem. 263, 333–352 (1989)

    Article  CAS  Google Scholar 

  2. C. Barbero, J.J. Silber, L. Sereno, J. Electroanal. Chem. 291, 81–101 (1990)

    Article  CAS  Google Scholar 

  3. T. Ohsaka, S. Kunimura, N. Oyama, Electrochim. Acta 33, 639–645 (1988)

    Article  CAS  Google Scholar 

  4. A. Guenbourg, A. Kacemi, A. Benbachir, L. Aries, Prog. Org. Coat. 38, 121–127 (2000)

    Article  Google Scholar 

  5. S. Kunimura, T. Ohsaka, N. Oyama, Macromolecules 21, 894–900 (1988)

    Article  CAS  Google Scholar 

  6. Y. Yang, Z. Lin, Synth. Met. 78, 111–115 (1996)

    Article  CAS  Google Scholar 

  7. C. Barbero, R.I. Tucceri, D. Posadas, J.J. Silber, L. Sereno, Electrochim. Acta 40, 1037–1040 (1995)

    Article  CAS  Google Scholar 

  8. D. Pan, J. Chen, L. Nie, W. Tao, S. Yao, Electrochim. Acta 49, 795–801 (2004)

    Article  CAS  Google Scholar 

  9. D. Pan, J. Chen, S. Yao, W. Tao, L. Nie, Anal. Sci. 21, 367 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. X. Chen, J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie, S. Yao, Talanta 76, 763–767 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Z. Zhang, H. Liu, J. Deng, J. Anal. Chem. 68, 1632–1638 (1996)

    Article  CAS  Google Scholar 

  12. M.S. Golabi, A. Nozad, Electroanalysis 15, 278–286 (2003)

    Article  CAS  Google Scholar 

  13. A.Q. Zhang, C.Q. Cui, J.Y. Lee, J. Electroanal. Chem. 413, 143–151 (1996)

    Article  Google Scholar 

  14. G. Inzelt, M. Pineri, J.W. Schulttze, M.A. Vorotyntsev, Electrochim. Acta 45, 2403–2421 (2000)

    Article  CAS  Google Scholar 

  15. Z. Cai, C.R. Martin, J. Electroanal. Chem 300, 35 (1991)

    Article  CAS  Google Scholar 

  16. R. Tucceri, Open Phys. Chem J. 3, 72–78 (2009)

    Google Scholar 

  17. E. Kowsari, A. Ehsani, M. DashtiNajafi, M. Bigdeloo, J. Colloid Interface Sci. 512, 346–352 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. A. Ehsani, J. Khodayari, M. Hadi, H. Mohammad Shiri, H. Mostaanzadeh, Ionics. 23, 131–138 (2017)

    Article  CAS  Google Scholar 

  19. M. Naseri, L. Fotouhi, A. Ehsani, H. Mohammad Shiri, J. Colloid Interface Sci. 484, 308–313 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Torabian, S. Hajghani, J. Colloid Interface Sci. 490, 91–96 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. F. BoorboorAjdari, E. Kowsari, A. Ehsani, J. Colloid Interface Sci. 509, 189–194 (2018)

    Article  CAS  Google Scholar 

  22. A. Ehsani, B. Mirtamizdoust, M. Yousefi, R. Safari, M. Hadi, A.K. Heidari, Bull. Chem. Soc. Jpn 91, 617–622 (2018)

    Article  CAS  Google Scholar 

  23. H. Mohammad Shiri, A. Ehsani, J. Colloid Interface Sci. 495, 102–110 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. A. Ehsani, M. Mahjani., M. Jafarian, Synth. Metal 162, 199–204 (2012)

    Article  CAS  Google Scholar 

  25. H.M. Shiri, A. Ehsani, J.S. Shayeh, RSC Adv. 59, 1062–91068 (2015)

    Google Scholar 

  26. H. Mohammad Shiri, A. Ehsani, R. Behjatmanesh-Ardakani, J. Taiwan. Inst. Chem. 93, 632–643 (2018)

    Article  CAS  Google Scholar 

  27. A. Ehsani, A.H.M. Shiri, E. Kowsari, R. Safari, J. Torabian, S. Kazemi, J. Colloid Interface Sci. 478, 181–187 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. H. Mohammad Shiri, A. Ehsani, J. Colloid Interface Sci. 484, 70–76 (2016)

    Article  CAS  Google Scholar 

  29. C.F. Matta, R.J. Boyd, The quantum Theory of Atoms in Molecules (Wiley, Weinheim, 2007)

    Book  Google Scholar 

  30. A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. ShabaniShayeh, M. Barbary, J. Colloid Interface Sci. 490, 702 (2017)

    Google Scholar 

  31. C.C. Hu, C.H. Chu, J. Electroanal. Chem. 503, 105–116 (2001)

    Article  CAS  Google Scholar 

  32. Y. Li, J. Jian, L. Xiao, H. Wang, L. Yu, G. Cheng, J.Zhou,M. Sun, Mater. Lett. 184, 21–24 (2016)

    Article  CAS  Google Scholar 

  33. E. Kowsari, A. Ehsani, S. Assadi, R. Safari, J. Electroanal. Chem. 826, 65–75 (2018)

    Article  CAS  Google Scholar 

  34. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun. 11, 1158–1161 (2009)

    Article  CAS  Google Scholar 

  35. N. Lia, C.Y. Zhi, H. Zhanga, Electrochim. Acta 220, 618–627 (2016)

    Article  CAS  Google Scholar 

  36. N. Li, X. Huang, R. Li, Y. Chen, Y. Li, Z. Shi, H. Zhang, Electrochim. Acta 219, 61–69 (2016)

    Article  CAS  Google Scholar 

  37. G.J. Brug, A.V. Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176, 275 (1984)

    Article  CAS  Google Scholar 

  38. A. Ehsani, M. Mahjani, M. Jafarian, Synth. Metal 161, 1760–1765 (2011)

    Article  CAS  Google Scholar 

  39. A. Ehsani, M. Mahjani, M. Jafarian, A. Naeemy, Prog. Org. Coat. 69, 510–516 (2010)

    Article  CAS  Google Scholar 

  40. J. Bobacka, M. Grzeszezuk, A. Ivaska, Electrochim. Acta 37, 1759 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the University of Qom Research Council for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Safari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, R., Ehsani, A., Bigdelo, M. et al. Enhancing the electrochemical properties of the p-type conductive polymer on the surface of the new synthesized 2-(pyridin-3-ylmethylene) hydrazine-1-carbothioamide-modified electrode: computational and electrochemical study. J IRAN CHEM SOC 16, 1441–1449 (2019). https://doi.org/10.1007/s13738-019-01612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01612-7

Keywords

Navigation