Skip to main content
Log in

Monolithic solid-phase extraction for the rapid on-line monitoring of microcystins in surface waters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the development and optimization of a sensitive and selective screening method for the measurement of trace levels of microcystins in surface waters. Several sample preparation techniques were compared, including solid-phase microextraction (SPME), particle-based solid-phase extraction (SPE), and monolith-based SPE. A flow-injection (FI) based approach employing a reversed-phase monolithic SPE column was found to be optimal. Quantification was performed by directly interfacing the FI-based SPE system to an electrospray ionization-mass spectrometer (ESI-MS). To more safely simulate peptidyl toxins such as the microcystins, a model peptide (i.e., angiotensin II) was used for method optimization. Sample loading flow rate and volume, eluent composition, and elution flow rate were optimized. Sample throughput was six samples per hour, a detection limit of 1.31 ng angiotensin II was demonstrated for a linear dynamic range from 11,000 ng and 3.4% relative standard deviation (n = 4, 100 ng sample). Sample volumes up to 1,000 ml of surface water could be loaded onto the monolithic SPE disk without exceeding the sorbent’s capacity. Unlike conventional particle-based SPE methods, the monolithic SPE disk does not need to be replaced between samples and could be used indefinitely. The FI-based SPE-ESI-MS method was successfully applied to the determination of microcystin-LR, the most common of the microcystins, in environmental samples and was demonstrated for the direct monitoring of chlorinated drinking water, with trends tracked over a period of eight months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peréz S, Aga D (2005) Recent advances in the sample preparation, liquid chromatography tandem mass spectrometric analysis and environmental fate of microcystins in water. Trends Anal Chem 24:658

    Article  CAS  Google Scholar 

  2. Kondo F, Ito Y, Oka H, Yamada S, Tsuji K, Imokawa M, Niimi Y, Harada K, Ueno Y, Miyazaki Y (2002) Determination of microcystins in lake water using reusable immunoaffinity column. Toxicon 40:893

    Article  CAS  Google Scholar 

  3. Aranda-Rodriguez R, Kubwabo C, Benoit FM (2003) Extraction of 15 microcystins and nodularin using immunoaffinity columns. Toxicon 42:587

    Article  CAS  Google Scholar 

  4. Aguete EC, Gago-Martinez A, Leao JM, Rodriguez-Vazquez JA, Menard C, Lawrence JF (2003) HPLC and HPCE analysis of microcystins RR, LR and YR present in cyanobacteria and water by using immunoaffinity extraction. Talanta 59:697

    Article  CAS  Google Scholar 

  5. Lawrence JF, Menard C (2001) Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography. J Chromatogr A 922:111

    Article  CAS  Google Scholar 

  6. Lawton LA, Edwards C, Codd GA (1994) Extraction and high-performance liquid-chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119:1525

    Article  CAS  Google Scholar 

  7. Rivasseau C, Martins S, Hennion MC (1998) Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. J Chromatogr A 799:155

    Article  CAS  Google Scholar 

  8. Karlsson KM, Spoof LEM, Meriluoto JAO (2005) Quantitative LC-ESI-MS analyses of microcystins and nodularin-R in animal tissue-matrix effects and method validation. Environ Toxicol 20:381

    Article  CAS  Google Scholar 

  9. Ott JL, Carmichael WW (2006) LC/ESI/MS method development for the analysis of hepatotoxic cyclic peptide microcystins in animal tissues. Toxicon 47:734

    Article  CAS  Google Scholar 

  10. Poon KF, Lam MHW, Lam PKS, Wong BSF (2001) Determination of microcystins in cyanobacterial blooms by solid-phase microextraction-high-performance liquid chromatography. Environ Toxicol Chem 20:1648

    Article  CAS  Google Scholar 

  11. Lee HS, Jeong CK, Lee HM, Choi SJ, Do KS, Kim K, Kim YH (1999) On-line trace enrichment for the simultaneous determination of microcystins in aqueous samples using high-performance liquid chromatography with diode-array detection. J Chromatogr A 848:179

    Article  CAS  Google Scholar 

  12. Rivasseau C, Vanhoenacker G, Sandra P, Hennion MC (2000) On-line solid-phase extraction in microcolumn-liquid chromatography coupled to UV or MS detection: application to the analysis of cyanobacterial toxins. J Microcolumn Sep 12:323

    Article  CAS  Google Scholar 

  13. Allis O, Dauphard JHB, Shuilleabhain AN, Lehane M, James KJ, Furey A (2007) Liquid chromatography-tandem mass spectrometry application, for the determination of extracellular hepatotoxins in Irish Lake and drinking waters. Anal Chem 79:3436

    Article  CAS  Google Scholar 

  14. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, New York

    Google Scholar 

  15. Maizels M, Budde WL (2004) A LC/MS method for the determination of cyanobacteria toxins in water. Anal Chem 76:1342

    Article  CAS  Google Scholar 

  16. Diehnelt CW, Peterman SM, Budde WL (2005) Liquid chromatography-tandem mass spectrometry and accurate m/z measurements of cyclic peptide cyanobacteria toxins. Trends Anal Chem 24:622

    Article  CAS  Google Scholar 

  17. Dahlmann J, Budakowski WR, Luckas B (2003) Liquid chromatography-electrospray ionisation–mass spectrometry based method for the simultaneous determination of algal and cyanobacterial toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins. J Chromatogr A 994:45

    Article  CAS  Google Scholar 

  18. Lawrence JF, Menard C (2001) Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography. J Chromatogr A 922:111

    Article  CAS  Google Scholar 

  19. Zweigenbaum JA, Henion JD, Beattie KA, Codd GA, Poon GK (2000) Direct analysis of microcystins by microbore liquid chromatography electrospray ionization ion-trap tandem mass spectrometry. J Pharm Biomed Anal 23:723

    Article  CAS  Google Scholar 

  20. Lawrence JF, Niedzwiadek B, Menard C, Lau BPY, Lewis D, Kuper-Goodman T, Carbone S, Holmes C (2001) Comparison of liquid chromatography/mass spectrometry, ELISA, and phosphatase assay for the determination of microcystins in blue-green algae products. J AOAC Int 84:1035

    CAS  Google Scholar 

  21. Nivsarkar M, Kaushik MP (2002) Liquid chromatography determination and LC-ESI-MS analysis of microcystin-LR from PCC strains of Microcystis aeruginosa. J Liq Chromatogr Relat Technol 25:865

    Article  CAS  Google Scholar 

  22. Hummert C, Dahlmann J, Reinhardt K, Dang HPH, Dang DK, Luckas B (2001) Liquid chromatography—mass spectrometry identification of microcystins in Microcystis aeruginosa strain from Lake Thanh Cong, Hanoi, Vietnam. Chromatographia 54:569

    Article  CAS  Google Scholar 

  23. Spoof L, Meriluoto J (2002) Rapid separation of microcystins and nodularin using a monolithic silica C-18 column. J Chromatogr A 947:237

    Article  CAS  Google Scholar 

  24. Cousins IT, Bealing DJ, James HA, Sutton A (1996) Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Res 30:481

    Article  CAS  Google Scholar 

  25. Kaya K, Sano T, Inoue H, Takagi H (2001) Selective determination of total normal microcystin by colorimetry, LC/UV detection and/or LC/MS. Anal Chim Acta 450:73

    Article  CAS  Google Scholar 

  26. Bateman KP, Thibault P, Douglas DJ, White RL (1995) Mass-spectral analyses of microcystins from toxic cyanobacteria using online chromatographic and electrophoretic separations. J Chromatogr A 712:253

    Article  CAS  Google Scholar 

  27. Bouaicha N, Rivasseau C, Hennion MC, Sandra P (1996) Detection of cyanobacterial toxins (microcystins) in cell extracts by micellar electrokinetic chromatography. J Chromatogr B-Biomed Appl 685:53

    Article  CAS  Google Scholar 

  28. Chorus I, Bartram J (1999) Toxic cyanbacteria in water: a guide to their public health consequences, monitoring, and management. E & FN Spon, London

    Google Scholar 

  29. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675

    Article  CAS  Google Scholar 

  30. Cole RB (1997) Electrospray ionization mass spectrometry: fundamentals, instrumentation, and applications. Wiley, New York

    Google Scholar 

  31. Oehrle SA, Westrick J (2003) Analysis of various cyanobacterial toxins by LC-MS. LC GC North America 21:634

    CAS  Google Scholar 

  32. Hormazabal V, Ostensvik O, Underdal B, Skulberg OM (2000) Simultaneous determination of the cyanotoxins anatoxin A, microcystin desmethyl-3-RR, LR, RR and YR in water using liquid chromatography–mass spectrometry. J Liq Chromatogr Relat Technol 23:3155

    Article  CAS  Google Scholar 

  33. Cameán A, Moreno IM, Ruiz MJ, Picó Y (2004) Determination of microcystins in natural blooms and cyanobacterial strain cultures by matrix solid-phase dispersion and liquid chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry 380:537

    Article  CAS  Google Scholar 

  34. Jurczak T, Tarczyñska M, Karlsson K, Meriluoto J (2004) Characterization and diversity of cyano-bacterial hepatotoxins (microcystins) in blooms from polish freshwaters identified by liquid chromatography–electrospray ionisation mass spectrometry. Chromatographia 59:571

    Article  CAS  Google Scholar 

  35. Siren H, Jussila M, Liu HW, Peltoniemi S, Sivonen K, Riekkola ML (1999) Separation, purity testing and identification of cyanobacterial hepatotoxins with capillary electrophoresis and electrospray mass spectrometry. J Chromatogr A 839:203

    Article  CAS  Google Scholar 

  36. Chen J, Pawliszyn JB (1995) Solid-phase microextraction coupled to high-performance liquid chromatography. Anal Chem 67:2530

    Article  CAS  Google Scholar 

  37. Lin HH, Sung YH, Huang SD (2003) Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of phenylurea herbicides in aqueous samples. J Chromatogr A 1012:57

    Article  CAS  Google Scholar 

  38. Lambropoulou DA, Sakkas VA, Hela DG, Albanis TA (2002) Application of solid-phase microextraction in the monitoring of priority pesticides in the Kalamas River (NW Greece). J Chromatogr A 963:107

    Article  CAS  Google Scholar 

  39. Mullett WM, Pawliszyn J (2002) Direct determination of benzodiazepines in biological fluids by restricted-access solid-phase microextraction. Anal Chem 74:1081

    Article  CAS  Google Scholar 

  40. Katayama M, Matsuda Y, Shimokawa K, Tanabe S, Hara I, Sato T, Kaneko S, Daimon H (2001) Determination of beta-blockers by high performance liquid chromatography coupled with solid phase microextraction from urine and plasma samples. Anal Lett 34:91

    Article  CAS  Google Scholar 

  41. Kataoka H, Lord HL, Pawliszyn J (2000) Simple and rapid determination of amphetamine, methamphetamine, and their methylenedioxy derivatives in urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-electrospray ionization mass spectrometry. J Anal Toxicol 24:257

    CAS  Google Scholar 

  42. Saito Y, Kawazoe M, Hayashida M, Jinno K (2000) Direct coupling of microcolumn liquid chromatography with in-tube solid-phase microextraction for the analysis of antidepressant drugs. Analyst 125:807

    Article  CAS  Google Scholar 

  43. Gou YN, Eisert R, Pawliszyn J (2000) Automated in-tube solid-phase microextraction-high-performance liquid chromatography for carbamate pesticide analysis. J Chromatogr A 873:137

    Article  CAS  Google Scholar 

  44. Walles M, Mullett WM, Pawliszyn J (2004) Monitoring of drugs and metabolites in whole blood by restricted-access solid-phase microextraction coupled to liquid chromatography-mass spectrometry. J Chromatogr A 1025:85

    Article  CAS  Google Scholar 

  45. Fritz JS, Gjerde DT (2000) Ion chromatography. Wiley-VCH, New York

    Google Scholar 

  46. Small H (1989) Ion chromatography. Plenum, New York

    Google Scholar 

  47. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizka N (2001) Monolithic LC columns. Anal Chem 73:420A

    Article  CAS  Google Scholar 

  48. Svec F, Frechet JMJ (1999) Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications. Ind Eng Chem Res 38:34

    Article  CAS  Google Scholar 

  49. Viklund C, Svec F, Frechet JMJ, Irgum K (1996) Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization. Chem Mater 8:744

    Article  CAS  Google Scholar 

  50. Leinweber FC, Tallarek U (2003) Chromatographic performance of monolithic and particulate stationary phases—hydrodynamics and adsorption capacity. J Chromatogr A 1006:207

    Article  CAS  Google Scholar 

  51. Peters EC, Svec F, Frechet JMJ (1999) Rigid macroporous polymer monoliths. Adv Mat 11:1169

    Article  CAS  Google Scholar 

  52. Snyder AP (2000) Interpreting protein mass spectra: a comprehensive resource. Oxford University Press, New York

    Google Scholar 

  53. Bobeldijk I, Stoks PGM, Vissers JPC, Emke E, van Leerdam JA, Muilwijk B, Berbee R, Noij THM (2002) Surface and wastewater quality monitoring: combination of liquid chromatography with (geno)toxicity detection, diode array detection and tandem mass spectrometry for identification of pollutants. J Chromatogr A 970:167

    Article  CAS  Google Scholar 

  54. Wetzel RG (2001) Limnology: lake and river ecosystems. Academic, San Diego

    Google Scholar 

  55. Takino M, Kyono Y (2000) Application brief: LC/MS analysis of microcystins in freshwater by electrospray ionization. Agilent Technologies, Inc., USA

    Google Scholar 

Download references

Acknowledgements

We thank Professor Colleen McDermott (University of WisconsinOshkosh) for generously providing the samples of cyanobacteria. This work was supported by the UWM Center for Water Security. Presented in part at the 57th Pittsburgh Conference on Analytical Chemistry & Applied Spectroscopy, Orlando, FL (March 2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Aldstadt III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammerman, J.L., Aldstadt, J.H. Monolithic solid-phase extraction for the rapid on-line monitoring of microcystins in surface waters. Microchim Acta 164, 185–196 (2009). https://doi.org/10.1007/s00604-008-0056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0056-8

Keywords

Navigation