Skip to main content
Log in

Amperometric biosensors for lactic acid based on baker’s and wine yeast

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrodes modified with a layer of baker’s and wine yeast Saccharomyces cerevisiae (dried at various temperatures) were investigated as amperometric biosensors for lactic acid in the presence of mediators such as potassium ferricyanide, phenazine methosulphate, 1,2-naphthoquinone-4-sulfonic acid sodium salt and p-benzoquinone. Potassium ferricyanide was found to be the most suitable mediator in terms of electrode sensitivity and stability. The linear range of the current responses to the concentration of lactic acid was up to 1 mM. The relationship of electrode responses to lactic acid and viability of yeast cells was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nicolaus N, Strehlitz B (2008) Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchim Acta 160:15

    Article  CAS  Google Scholar 

  2. Gerard M, Ramanathan K, Chaubey A, Malhotra BD (1996) Immobilization of lactate dehydrogenase on electrochemically prepared polyaniline films. Electroanal 11:450

    Article  Google Scholar 

  3. Chaubey A, Gerard M, Singhal R, Singh VS, Malhotra BD (2000) Immobilization of lactate dehydrogenase on electrochemically prepared polypyrrole-polyvinylsulfonate composite films for application to lactate biosensors. Electrochim Acta 46:723

    Article  CAS  Google Scholar 

  4. Zayats M, Kharitonov AB, Katz E, Buckmann AF, Wilner I (2000) An integrated NAD+-dependent enzyme-functionalized field effect transistor (ENFE+) system: development of a lactate biosensor. Biosens Bioelectron 15:671

    Article  CAS  Google Scholar 

  5. Leonida MD, Starczynowski DT, Waldman R, Aurian-Blajeni B (2003) Polymeric FAD used as enzyme-friendly mediator in lactate detection. Anal Bioanal Chem 376:832

    Article  CAS  Google Scholar 

  6. Spohn U, Narasaiah D, Gorton L (1996) The influence of the carbon paste composition on the performance of an amperometric bienzyme sensor for l-lactate. Electroanal 8:567

    Google Scholar 

  7. Garjonyte R, Yigzaw Y, Meskys R, Malinauskas A, Gorton L (2001) Prussian Blue- and lactate oxidase-based biosensor for lactic acid. Sens Act B 87:33

    Article  Google Scholar 

  8. Hirano K, Yamato H, Kurimoto K, Ohwa M (2002) Design of novel electron transfer mediators based on indophenol derivatives for lactate biosensor. Biosens Bioelectron 17:315

    Article  CAS  Google Scholar 

  9. Kulys JJ, Svirmickas GJS (1980) Reagentless lactate sensor based on cytochrome b 2. Anal Chim Acta 117:115

    Article  CAS  Google Scholar 

  10. Staskeviciene SL, Cenas NK, Kulys JJ (1991) Reagentless lactate electrodes based on electrocatalytic oxidation of flavocytochrome b 2. Anal Chim Acta 243:167

    Article  CAS  Google Scholar 

  11. Amine A, Deni J, Kaufmann JM (1994) Amperometric biosensor based on carbon paste mixed with enzyme, lipid and cytochrome c. Bioelectrochem Bioenerg 34:123

    Article  CAS  Google Scholar 

  12. Smutok O, Gayda G, Gonchar M, Schuhmann W (2005) A novel l-lactate selective biosensor based on flavocytochrome b 2 from methylotropic yeast Hansenula polymorpha. Biosens Bioelectron 20:1285

    Article  CAS  Google Scholar 

  13. Kulys J, Wang L, Razumas V (1992) Sensitive yeast bioelectrode to l-lactate. Electroanal 4:527

    Article  CAS  Google Scholar 

  14. Garjonyte R, Malinauskas A (2003) Investigation of baker’s yeast Saccharomyces cerevisiae- and mediator-based carbon paste electrodes as amperometric biosensors for lactic acid. Sens Act B 96:509

    Article  CAS  Google Scholar 

  15. Garjonyte R, Melvydas V, Malinauskas A (2006) Mediated amperometric biosensors for lactic acid based on carbon paste electrodes modified with baker’s yeast Saccharomyces cerevisiae. Bioelectrochem 68:191

    Article  CAS  Google Scholar 

  16. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337

    Article  CAS  Google Scholar 

  17. Baronian KHR (2004) The use of yeasts and moulds as sensing elements in biosensors. Biosens Bioelectron 19:953

    Article  CAS  Google Scholar 

  18. Khlupova M, Kuznetsov B, Demkiv O, Gonchar M, Csoregi E, Shleev S (2007) Intact and permeabilized cells of the yeast Hansenula polymorpha as bioselective elements for amperometric assay of formaldehyde. Talanta 71:934

    Article  CAS  Google Scholar 

  19. Khlupova M, Kuznetsov B, Gonchar M, Ruzgas T, Shleev S (2007) Amperometric monitoring of redox activity in intact, permeabilised and lyophilised cells of the yeast Hansenula polymorpha. Electrochem Commun 9:1480

    Article  CAS  Google Scholar 

  20. Baronian KHR, Downard AJ, Lowen RK, Pasco N (2002) Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method. Appl Microbiol Technol 60:108

    Article  CAS  Google Scholar 

  21. Heiskanen A, Yakovleva J, Spegel C, Taboryski R, Koudelka-Hep M, Emneus J, Ruzgas T (2004) Amperometric monitoring of redox activity in living cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochem Commun 6:219

    Article  CAS  Google Scholar 

  22. Zhao J, Wang M, Yang Z, Gong Q, Lu Y, Yang Z (2005) Mediated electrochemical measurement of inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae”, Biotechnol. Lett 27:207

    CAS  Google Scholar 

  23. Wang M, Zhao J, Yang Z, Du Z, Yang Z (2007) Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae. Bioelectrochem 71:107

    Article  CAS  Google Scholar 

  24. Daff S, Ingledew WJ, Reid GA, Chapman SK (1996) New insights into the catalytic cycle of flavocytochrome b 2. Biochemistry 35:6345

    Article  CAS  Google Scholar 

  25. Smutok OV, Os’mak GS, Gaida GZ, Gonchar MV (2006) Screening of yeasts producing stable l-lactate cytochrome c oxireductase and study of the regulation of enzyme synthesis. Microbiology 75:20

    Article  CAS  Google Scholar 

  26. Urban P, Lederer F (1988) Inactivation of flavocytochrome b 2 with fluoropyruvate; reaction at the active site histidine. Eur J Biochem 173:155

    Article  CAS  Google Scholar 

  27. Marchesiello M, Genies EM (1992) Glucose sensor: polypyrrole-glucose oxidase electrode in the presence of p-benzoquinone. Electrochim. Acta 37:1987

    Article  CAS  Google Scholar 

  28. Ng LT, Yuan YH, Zhao H (1998) Natural polymer-based sulfite biosensor. Electroanal 10:1119

    Article  CAS  Google Scholar 

  29. Takayama T, Kurosaki T, Ikeda T (1993) Mediated electrocatalysis at a biocatalyst electrode based on a bacterium Gluconobacter industrius. J Electroanal Chem 356:295

    Article  CAS  Google Scholar 

  30. Takayama K, Ikeda T, Nagasawa T (1996) Mediated amperometric biosensor for nicotinic acid based on whole cells of Pseudomonas fluorescens. Electroanal 8:765

    Article  CAS  Google Scholar 

  31. Lorenzen PC, Ebert Y, Clawin-Radecker I, Sclimme E (2003) Influence of heat impact in reconstituted skim milk on the properties of yoghurt fermented by ropy or non-ropy starter culture. Nahr Food 47:349

    Article  CAS  Google Scholar 

  32. Garmiene G, Salkauskiene V, Kulikauskiene M (2005) Lactic acid isomers in milk products. Milchwissenschaft 60:259

    CAS  Google Scholar 

Download references

Acknowledgement

The support from the Lithuanian State Science and Studies Foundation (project No. C-03047) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasa Garjonyte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garjonyte, R., Melvydas, V. & Malinauskas, A. Amperometric biosensors for lactic acid based on baker’s and wine yeast. Microchim Acta 164, 177–183 (2009). https://doi.org/10.1007/s00604-008-0055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0055-9

Keywords

Navigation