Skip to main content
Log in

Screening of rationally designed oligopeptides for Listeria monocytogenes detection by means of a high density colorimetric microarray

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The aim of this work was to optimize, by means of molecular modeling software, biomimetic-based traps for pathogen detection suitable for analytical applications like screening or pre-analytical methods. The pathogen prototype system chosen was Listeria monocytogenes because of the large number of X ray and NMR structures available. 298 oligopeptides were computationally designed mimicking the binding pocket of the mammalian protein E-cadherin, the target of Listeria monocytogenes adhesion, internalin A. The contribution of individual peptides to bind was investigated using FRED, a protein-ligand docking program. Ten peptides were selected for experimental analysis taking as selection parameters the length, the position in the docking pocket and the score of simulated binding energy. A series of competition assays were carried out using high density colorimetric microarray using various bacteria species (Listeria monocytogenes, Listeria monocytogenes genetically modified without internalin A, Listeria innocua and Lactococcus lactis) in solution with computationally selected peptides. The data demonstrated that peptides could be able to distinguish Listeria monocytogenes with an EC50 up to 107cfu × mL−1. In particular the peptide with the best calculated binding score gave the highest statistically unambiguous response toward Listeria monocytogenes compared to other bacteria, demonstrating that rationally simulated approach can be useful as preliminary screening in the choice of biomimetic ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dutta S, Berman HM (2005) Large macromolecular complexes review in the protein data bank: a status report. Structure 13:381

    Article  CAS  Google Scholar 

  2. Tozzi C, Anfossi L, Giraudi G (2003) Affinity chromatography techniques based on the immobilisation of peptides exhibiting specific binding activity. J Chromatogr B 797:289

    Article  CAS  Google Scholar 

  3. Mascini M, Del Carlo M, Cozzani I, Tiscar PG, Mpamhanga CP, Chen B, Compagnone D (2006) Piezoelectric sensors based on biomimetic peptides for the detection of heat shock proteins (hsps) in mussels. Anal Lett 39:1627

    Article  CAS  Google Scholar 

  4. Mascini M, Macagnano A, Scortichini G, Del Carlo M, Diletti G, D’Amico A, Di Natale C, Compagnone D (2005) Biomimetic sensors for dioxins detection in food samples. Sens Actuators B 111–112:376

    Article  CAS  Google Scholar 

  5. Liu FF, Wang T, Dong XY, Sun Y (2007) Rational design of affinity peptide ligand by flexible docking simulation. J Chromatogr A 1146:41

    Article  CAS  Google Scholar 

  6. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424

    Article  CAS  Google Scholar 

  7. Baines IC, Colas P (2006) Peptide aptamers as guides for small-molecule. Drug Discov Today 11:334

    Article  CAS  Google Scholar 

  8. Falciani C, Lozzi L, Pini A, Bracci L (2005) Bioactive peptides from libraries. Chem Biol 12:417

    Article  CAS  Google Scholar 

  9. Gujraty K, Sadacharan S, Frost M, Poon V, Kane RS, Mogridge J (2005) Functional characterization of peptide-based anthrax toxin inhibitors. Mol Pharm 2:367

    Article  CAS  Google Scholar 

  10. Turk BE, Cantley LC (2003) Peptide libraries: at the crossroads of proteomics and bioinformatics. Curr Opin Chem Biol 7:84

    Article  CAS  Google Scholar 

  11. Stahl M, Guba W, Kansy M (2006) Integrating molecular design resources within modern drug discovery research: the Roche experience. Drug Discov Today 11:326

    Article  CAS  Google Scholar 

  12. Laggner C, Schieferer C, Fiechtner B, Poles G, Hoffmann RD, Glossmann H, Langer T, Moebius FF (2005) Discovery of High-affinity ligands of sigma 1 receptor, ERG2, and emopamil binding protein by pharmacophore modeling and virtual screening. J Med Chem 48:4754

    Article  CAS  Google Scholar 

  13. Labrou NE (2003) Design and selection of ligands for affinity chromatography. J Chromatogr B 790:67

    Article  CAS  Google Scholar 

  14. Tomi K (2006) Sawyer chemical biology and drug design: three-dimensional, dynamic, and mechanistic nature of two multidisciplinary fields. Chem Biol Drug Des 67:196

    Article  CAS  Google Scholar 

  15. Chiang YC, Yang CY, Li C, Ho YC, Lin CK, Tsen HY (2006) Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp. and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization. Int J Food Microbiol 107:131

    Article  CAS  Google Scholar 

  16. Olsen JE (2000) DNA-based methods for detection of food-borne bacterial pathogens. Food Res Int 33:267

    Article  Google Scholar 

  17. Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205

    Article  CAS  Google Scholar 

  18. Tatley F, Aldwel FE, Anita K, Dunbier AK, Guilford PJ (2003) N-terminal e-cadherin peptides act as decoy receptors for Listeria monocytogenes. Infect Immun 71:1580

    Article  CAS  Google Scholar 

  19. Schubert WD, Heinz WD (2003) Structural aspects of adhesion to and invasion of host cells by the human pathogen Listeria monocytogenes. ChemBioChem 12:1285

    Article  CAS  Google Scholar 

  20. Schubert WD, Urbanke C, Ziehm Th, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T, Heinz DW (2002) Structure of Internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-Cadherin. Cell 111:825

    Article  CAS  Google Scholar 

  21. Mascini M, Guilbault G, Lebrun SJ, Compagnone D (2007) Colorimetric microarray detection system for Ghrelin using Aptamer-technology. Anal Lett 40:1386

    Article  CAS  Google Scholar 

  22. Gasanov U, Hughes D, Hansbro PM (2005) Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev 29:851

    Article  CAS  Google Scholar 

  23. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544

    Article  CAS  Google Scholar 

  24. Kim HJ, Bennetto HP, Halablab MA, Choi C, Yoon S (2006) Performance of an electrochemical sensor with different types of liposomal mediators for the detection of hemolytic bacteria. Sens Actuators B 119:143

    Article  CAS  Google Scholar 

  25. Susmel S, Guilbault GG, O’Sullivan CK (2003) Demonstration of labelless detection of food pathogens using electrochemical redox probe and screen printed gold electrodes. Biosens Bioelectron 18:881

    Article  CAS  Google Scholar 

  26. Vaughan RD, O’Sullivan CK, Guilbault GG (2001) Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme Microb Technol 29:635

    Article  CAS  Google Scholar 

  27. Tully E, Higson SP, O’Kennedy R (2007) The development of a ‘labeless’ immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B. Biosens Bioelectron available on line

  28. Corr S, Hill C, Gahan CGM (2006) An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microb Pathog 41:241

    Article  CAS  Google Scholar 

  29. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705

    Article  CAS  Google Scholar 

  30. Panicker RC, Huang X, Yao SQ (2004) Recent advances in peptide-based microarray technologies. Comb Chem High Throughput Screen 7:547

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by MEIF-CT-2005-011588 within the 6th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Mascini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascini, M., Guilbault, G.G., Monk, I.R. et al. Screening of rationally designed oligopeptides for Listeria monocytogenes detection by means of a high density colorimetric microarray. Microchim Acta 163, 227–235 (2008). https://doi.org/10.1007/s00604-008-0035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0035-0

Keywords

Navigation