Skip to main content
Log in

The Effect of Natural Thermal Cycles on Rock Outcrops: Knowledge and Prospect

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In recent years, interest in the effect of positive temperatures on rock faces has increased, as evidenced by the extensive literature on the subject. The subsurface rock masses of rock slopes are submitted to uncontrollable natural temperature cycles which cause deformation, displacement, opening and closing of discontinuities and can lead to surface failure or more important rockfalls. In this paper we offer a review of the publications on this theme focusing on in situ observations and measurements. Measurements are described and analysed considering conditions of temperature and insolation, displacements, strains, focusing on two French sites (Les Rochers de Valabres and La Roque-Gageac). Mechanical analysis is then performed. The impact of temperature variation is studied from basic assumptions to much more complex ones. Thermoelasticity is first assessed, and analytical computation is suggested, fracture mechanism and fatigue are also considered. Finally, we outline some challenges to be addressed in the coming years.

Highlights

  • The article reviews the accumulated knowledge on the effect of positive temperature changes on slope stability. Excluding the effect of water freezing and thawing.

  • The different types of measurements are reviewed considering surface and in-depth measurements of temperature, displacements, fracture opening, and strain.

  • Simple thermo-elastic analysis, alongside solutions from fracture mechanics are proposed.

  • A focus is proposed on 2 French sites to illustrate interpretations.

  • The conclusion summarizes the points of consensus, the aspects that are still under discussion among authors or should be more debated and open to pending challenges for the next years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Clément (2008)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data are available on request. Please contact the authors.

References

  • Alcaino-Olivares R, Leith K, Ziegler M, Perras M (2021) Thermo-mechanical fatigue cracking of the bedrock on an island in the Baltic Sea. Paper presented at the GEONIAGARA, Niagara Falls, Canada, September 26–29, 2021

  • Amadei B, Stephansson O (1997) Rock stress and its measurement. Kluwer Academic Publishers, Alphen aan den Rijn

  • Atkinson BK (1982) Subcritical crack propagation in rocks: theory, experimental results and applications. J Struct Geol 4(1):41–56. https://doi.org/10.1016/0191-8141(82)90005-0

    Article  Google Scholar 

  • Bakun-Mazor D, Hatzor YH, Glaser SD, Santamarina JC (2011) Climatic Effects On Key-block Motion: Evidence From the Rock Slopes of Masada World Heritage Site. Paper presented at the 45th U.S. Rock Mechanics / Geomechanics Symposium San Francisco, California, June 26 - 29, 2011

  • Bakun-Mazor D, Hatzor YH, Glaser SD, Carlos Santamarina J (2013) Thermally vs. seismically induced block displacements in Masada rock slopes. Int J Rock Mech Min Sci 61:196–211. https://doi.org/10.1016/j.ijrmms.2013.03.005

    Article  Google Scholar 

  • Bakun-Mazor D, Keissar Y, Feldheim A, Detournay C, Hatzor YH (2020) Thermally-induced wedging-ratcheting failure mechanism in rock slopes. Rock Mech Rock Eng 53(6):2521–2538. https://doi.org/10.1007/s00603-020-02075-6

    Article  Google Scholar 

  • Berest P, Weber P (1998) La thermomécanique des roches, vol Volume 16. Edition du BRGM, Orléans

  • Bertolus G (1998) Approche en site naturel des couplages thermo-hydro-mécaniques d’un massif carbonaté fracturé. Institut National Polytechnique de Lorraine, Nancy

  • Bièvre G, Franz M, Larose E, Carrière S, Jongmans D, Jaboyedoff M (2018) Influence of environmental parameters on the seismic velocity changes in a clayey mudflow (Pont-Bourquin Landslide, Switzerland). Eng Geol 245:248–257. https://doi.org/10.1016/j.enggeo.2018.08.013

    Article  Google Scholar 

  • Blackwelder E (1933) The insolation hyphothesis of rock weathering. Am J Sci s5–26(152):97–113. https://doi.org/10.2475/ajs.s5-26.152.97

    Article  Google Scholar 

  • Borgatti L, Soldati M (2010) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120(1–2):56–64. https://doi.org/10.1016/j.geomorph.2009.09.015

    Article  Google Scholar 

  • Breytenbach IJ (2022) Seasonal bedrock temperature oscillations and inversions as a function of depth and the implications for thermal fatigue. Phys Geogr 43(4):401–418. https://doi.org/10.1080/02723646.2020.1847242

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Oxford science publications, 2nd edition edn. #0, Clarendon press, Oxford University Press, Oxford, New York

  • Clément C (2008) Auscultation d’un versant rocheux soumis aux sollicitations thermiques naturelles. Cas des Rochers de Valabres (Alpes-Maritimes). PhD, INPL, Ecole des Mines de Nancy, Nancy

  • Clément C, Gunzburger Y, Merrien-Soukatchoff V, Dünner C Monitoring of natural thermal strains using hollow cylinder strain cells: The case of a large rock slope prone to rockfalls. In: Chen Z, Zhang J, Li Z, Wu F, Ho K (eds) Landslides and Engineered slopes, From the past to the future, Proc. 10th Int. Symp. Landslides (ISL), Xi'an (China), 30 June-4 July 2008 2008. Taylor and Francis Group (London), pp 1143–1149

  • Clément C, Merrien-Soukatchoff V, Dünner C, Gunzburger Y (2009) Stress measurement by overcoring at shallow depths in a rock slope: The scattering of input data and results. Rock Mech Rock Eng 42(4):585–609

    Article  Google Scholar 

  • Cloutier C, Locat J, Charbonneau F, Couture R (2015) Understanding the kinematic behavior of the active Gascons rockslide from in-situ and satellite monitoring data. Eng Geol 195:1–15. https://doi.org/10.1016/j.enggeo.2015.05.017

    Article  Google Scholar 

  • Collins B, Stock G (2010a) Correlation between thermal gradient and flexure-type deformation as a potential trigger for exfoliation-related rock falls (Invited). AGU Fall Meeting Abstracts:0742

  • Collins BD, Stock GM (2010b) Quantifying thermally induced rock flexure as a potential rock-fall trigger. Geological Society of America Abstracts with Programs 42

  • Collins BD, Stock GM (2016) Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat Geosci. https://doi.org/10.1038/ngeo2686

    Article  Google Scholar 

  • Collins BD, Stock GM, Eppes M-C, Lewis SW, Corbett SC, Smith JB (2018) Thermal influences on spontaneous rock dome exfoliation. Nat Commun 9(1):762. https://doi.org/10.1038/s41467-017-02728-1

    Article  Google Scholar 

  • Colombero C, Jongmans D, Fiolleau S, Valentin J, Baillet L, Bièvre G (2021) Seismic noise parameters as indicators of reversible modifications in slope stability: a review. Surv Geophys 42(2):339–375. https://doi.org/10.1007/s10712-021-09632-w

    Article  Google Scholar 

  • Coutard JP, Francou B (1989) Rock temperature measurements in two alpine environments: implications for frost shattering. Arct Alp Res 21(4):399–416

    Article  Google Scholar 

  • Delonca A, Gunzburger Y, Verdel T (2014) Statistical correlation between meteorological and rockfall databases. Nat Hazards Earth Syst Sci 14(8):1953–1964. https://doi.org/10.5194/nhess-14-1953-2014

    Article  Google Scholar 

  • Engerand J-L (1990) Mécanique de la rupture. Techniques de l'ingénieur Comportement en service des systèmes et composants mécaniques base documentaire : TIB180DUO (ref. article : b5060):13

  • Eppes M-C (2022) 3.03—mechanical weathering: a conceptual overview. In: Shroder JF (ed) Treatise on Geomorphology, 2nd edn. Academic Press, Oxford, pp 30–45. https://doi.org/10.1016/B978-0-12-818234-5.00200-5

    Chapter  Google Scholar 

  • Eppes M-C, Keanini R (2017) Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Rev Geophys 55(2):470–508. https://doi.org/10.1002/2017rg000557

    Article  Google Scholar 

  • Eppes MC, McFadden LD, Wegmann KW, Scuderi LA (2010) Cracks in desert pavement rocks: further insights into mechanical weathering by directional insolation. Geomorphology 123(1–2):97–108

    Article  Google Scholar 

  • Eppes MC, Magi B, Hallet B, Delmelle E, Mackenzie-Helnwein P, Warren K, Swami S (2016) Deciphering the role of solar-induced thermal stresses in rock weathering. GSA Bull 128(9–10):1315–1338. https://doi.org/10.1130/B31422.1

    Article  Google Scholar 

  • Eppes MC, Magi B, Scheff J, Warren K, Ching S, Feng T (2020) Warmer, wetter climates accelerate mechanical weathering in field data, independent of stress-loading. Geophys Res Lett 47(24):2020GL89062. https://doi.org/10.1029/2020GL089062

    Article  Google Scholar 

  • Fiorucci M, Marmoni GM, Martino S, Mazzanti P (2018) Thermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto Test-Site, Italy). Sensors 18(7):2221

    Article  Google Scholar 

  • Fredrich JT, Wong T-f (1986) Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res 91(B12):12743–12764. https://doi.org/10.1029/JB091iB12p12743

    Article  Google Scholar 

  • Gasc-Barbier M, Merrien-Soukatchoff V (2019) Effect of natural thermal cycles on rock slopes stability- study of 2 French sites. In: da Fontoura SAB, Rocca RJ, Mendoza J (eds) Rock mechanics for natural resources and infrastructure development. CRC Press, Boca Raton. https://doi.org/10.1201/9780367823177

    Chapter  Google Scholar 

  • Gasc-Barbier M, Merrien-Soukatchoff V, Berest P (2017) Manuel de mécanique des roches Tome V Thermomécanique des roches. Sciences de la Terre et de l'environnement.

  • Gasc-Barbier M, Merrien-Soukatchoff V, Villarraga-Diaz C (2020) Effet de cycles thermiques sur un massif rocheux: observations et mesures au laboratoire et in situ. Revue Française De Geotechnique 163:4–12

    Article  Google Scholar 

  • Gasc-Barbier M, Merrien-Soukatchoff V, Virely D (2021) The role of natural thermal cycles on a limestone cliff mechanical behaviour. Eng Geol 293(106293):8. https://doi.org/10.1016/j.enggeo.2021.106293

    Article  Google Scholar 

  • Gasc-Barbier M, Merrien-Soukatchoff V, Genois J-L, Mougins C, Azémard P (2023) 10 years of thermo-mechanical monitoring of rock columns - les chandelles de l’Escalette, France. Paper presented at the 15th ISRM Congress 2023 & 72nd Geomechanics Colloquium, Salzburg,

  • Gischig V, Amann F, Moore JR, Loew S, Eisenbeiss H, Stempfhuber W (2011a) Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling. Eng Geol 118(1):37–53. https://doi.org/10.1016/j.enggeo.2010.11.006

    Article  Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011b) Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J Geophys Res Earth Surf 116(F4):F04010. https://doi.org/10.1029/2011jf002006

    Article  Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011c) Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J Geophys Res Earth Surf. https://doi.org/10.1029/2011JF002006

    Article  Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011d) Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J Geophys Res Earth Surf 116(F4):F04011. https://doi.org/10.1029/2011jf002007

    Article  Google Scholar 

  • Greif V, Sassa K, Fukuoka H (2006) Failure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan). Landslides 3(1):22–38. https://doi.org/10.1007/s10346-005-0013-0

    Article  Google Scholar 

  • Griggs DT (1936) The factor of fatigue in rock exfoliation. J Geol 44(7):783–796. https://doi.org/10.1086/624483

    Article  Google Scholar 

  • Grøneng G, Christiansen HH, Nilsen B, Blikra LH (2011) Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway. Landslides 8(1):1–15. https://doi.org/10.1007/s10346-010-0224-x

    Article  Google Scholar 

  • Gruber S, Hoelzle M, Haeberli W (2004) Rock-wall temperatures in the Alps: modelling their topographic distribution and regional differences. Permafrost Periglac Process 15(3):299–307

    Article  Google Scholar 

  • Guenzi D, Godone D, Allasia P, Fazio NL, Perrotti M, Lollino P (2022) Brief communication: monitoring a soft-rock coastal cliff using webcams and strain sensors. Nat Hazards Earth Syst Sci 22(1):207–212. https://doi.org/10.5194/nhess-22-207-2022

    Article  Google Scholar 

  • Guerin A, Jaboyedoff M, Collins BD, Stock GM, Derron M-H, Abellán A, Matasci B (2020) Remote thermal detection of exfoliation sheet deformation. Landslides. https://doi.org/10.1007/s10346-020-01524-1

    Article  Google Scholar 

  • Gunzburger Y, Merrien-Soukatchoff V (2011) Near-surface temperatures and heat balance of bare outcrops exposed to solar radiation. Earth Surf Proc Land 36(12):1577–1589

    Article  Google Scholar 

  • Gunzburger Y, Merrien-Soukatchoff V, Senfaute G, Guglielmi Y, Piguet J-P Field investigations, monitoring and modeling in the identification of rock fall causes. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, June 28 -July 2, 2004 2004. Taylor & Francis Group, pp 557–563

  • Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 42(3):331–349

    Article  Google Scholar 

  • Hall K (1997) Rock temperatures and implications for cold region weathering. I: New data from Viking Valley, Alexander Island, Antarctica. Permafrost Periglacial Processes 8(1):69–90

    Article  Google Scholar 

  • Hall K (1999) The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 31(1–4):47–63

    Article  Google Scholar 

  • Hatzor YH (2003) Keyblock stability in seismically active rock slopes—snake path cliff, Masada. J Geotech Geoenviron Eng 129(8):697–710. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(697)

    Article  Google Scholar 

  • Henry J-P, Parsy F (1982) Cours d’élasticité. Dunod université, Dunod, Paris

    Google Scholar 

  • Homand-Etienne F, Houpert R (1989) Thermally induced microcracking in granites: characterization and analysis. Int J Rock Mech Min Sci Geomech Abstr 26(2):125–134

    Article  Google Scholar 

  • Humbert P, Dubouchet A, Fezans G, Remaud D (2005) CESAR-LCPC, un progiciel de calcul dédié au génie civil. Bulletin Des Laboratoires Des Ponts Et Chaussées Réf 4573:7–37

    Google Scholar 

  • Ishikawa M, Kurashige Y, Hirakawa K (2004) Analysis of crack movements observed in an alpine bedrock cliff. Earth Surf Proc Land 29(7):883–891

    Article  Google Scholar 

  • Jenkins KA, Smith BJ (1990) Daytime rock surface temperature variability and its implications for mechanical rock weathering: Tenerife, Canary Islands. CATENA 17(4–5):449–459

    Article  Google Scholar 

  • Kerr A, Smith BJ, Brian Whalley W, McGreevy JP (1984) Rock temperatures from southeast Morocco and their significance for experimental rock-weathering studies. Geology 12(5):306–309. https://doi.org/10.1130/0091-7613(1984)12%3c306:Rtfsma%3e2.0.Co;2

    Article  Google Scholar 

  • Krähenbühl R (2004) Temperatur Und Kluftwasser Als Ursachen Von Felssturz 9:19–35. https://doi.org/10.5169/seals-224989

    Article  Google Scholar 

  • Lamp JL, Marchant DR, Mackay SL, Head JW (2017) Thermal stress weathering and the spalling of Antarctic rocks. J Geophys Res Earth Surf 122(1):3–24. https://doi.org/10.1002/2016JF003992

    Article  Google Scholar 

  • Langet N, Silverberg FMJ (2022) Automated classification of seismic signals recorded on the Åknes rockslope, Western Norway, using a Convolutional Neural Network. Earth Surf Dynam Discuss 2022:1–50. https://doi.org/10.5194/esurf-2022-15

    Article  Google Scholar 

  • Leblond J-B (2003) Mécanique de la rupture fragile et ductile. Études en mécanique des matériaux et des structures. Hermes science publications Lavoisier, Paris

    Google Scholar 

  • Leith K, Perras M, Siren T, Rantanen T, Wolter A, Heinonen S, Loew S (2017) Development of a new thermally-induced fracture in a 12,000 year old bedrock surface. Paper presented at the Progressive Rock Failure 2017, Ascona, Switzerland,

  • Marmoni GM, Fiorucci M, Grechi G, Martino S (2020) Modelling of thermo-mechanical effects in a rock quarry wall induced by near-surface temperature fluctuations. Int J Rock Mech Min Sci 134:104440. https://doi.org/10.1016/j.ijrmms.2020.104440

    Article  Google Scholar 

  • Matsuoka N (2001) Direct observation of frost wedging in alpine bedrock. Earth Surf Proc Land 26(6):601–614

    Article  Google Scholar 

  • Matsuoka N, Murton J (2008) Frost weathering: Recent advances and future directions. Permafrost Periglac Process 19(2):195–210

    Article  Google Scholar 

  • McKay CP, Molaro JL, Marinova MM (2009) High-frequency rock temperature data from hyper-arid desert environments in the Atacama and the Antarctic Dry Valleys and implications for rock weathering. Geomorphology 110(3–4):182–187

    Article  Google Scholar 

  • Meredith PG, Atkinson BK (1983) Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys J Roy Astron Soc 75(1):1–21. https://doi.org/10.1111/j.1365-246X.1983.tb01911.x

    Article  Google Scholar 

  • Messenzehl K, Dikau R (2017) Structural and thermal controls of rockfall frequency and magnitude within rockwall–talus systems (Swiss Alps). Earth Surf Proc Land 42(13):1963–1981. https://doi.org/10.1002/esp.4155

    Article  Google Scholar 

  • Molaro JL, McKay CP (2010) Processes controlling rapid temperature variations on rock surfaces. Earth Surf Proc Land 35(5):501–507

    Google Scholar 

  • Mufundirwa A, Fujii Y, Kodama N, Kodama J-i (2011) Analysis of natural rock slope deformations under temperature variation: a case from a cool temperate region in Japan. Cold Reg Sci Technol 65(3):488–500. https://doi.org/10.1016/j.coldregions.2010.11.003

    Article  Google Scholar 

  • Nigrelli G, Chiarle M, Merlone A, Coppa G, Musacchio C (2022) Rock temperature variability in high-altitude rockfall-prone areas. J Mt Sci 19(3):798–811. https://doi.org/10.1007/s11629-021-7073-z

    Article  Google Scholar 

  • Ollier CD (1963) Insolation weathering; examples from central Australia. Am J Sci 261(4):376–381. https://doi.org/10.2475/ajs.261.4.376

    Article  Google Scholar 

  • Putot C, Chastanet J, Cacas MC, Daniel JP (2001) Fracturation naturelle d’un massif rocheux. Diaclases et couloirs de fracturation. Oil Gas Sci Technol Rev IFP 56(5):431–449

    Article  Google Scholar 

  • Racek O, Blahůt J, Hartvich F (2021) Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe). Geosci Instrum Method Data Syst 10(2):203–218. https://doi.org/10.5194/gi-10-203-2021

    Article  Google Scholar 

  • Racek O, Balek J, Loche M, Vích D, Blahůt J (2023) Rock surface strain in situ monitoring affected by temperature changes at the Požáry field lab (Czechia). Sensors 23(4):2237

    Article  Google Scholar 

  • Richter D, Simmons G (1974) Thermal expansion behavior of igneous rocks. Int J Rock Mech Min Sci Geomech Abstr 11(10):403–411. https://doi.org/10.1016/0148-9062(74)91111-5

    Article  Google Scholar 

  • Safanda J (1999) Ground surface temperature as a function of slope angle and slope orientation and its effect on the subsurface temperature field. Tectonophysics 306(3–4):367–375

    Article  Google Scholar 

  • Schmidt RA, Rossmanith HP (1983) Basics of rock fracture mechanics. In: Rossmanith HP (ed) Rock fracture mechanics, vol 275. Springer Vienna, Vienna, pp 1–29. https://doi.org/10.1007/978-3-7091-2750-6_1

    Chapter  Google Scholar 

  • Senfaute G, Merrien-Soukatchoff V, Clément C, Laouafa F, Dünner C, Pfeifle G, Guglielmi Y, Lancon H, Mudry J, Darve F, Donze F, Duriez J, Pouya A, Bemani P, Gasc M, Wassermarm J (2007) Impact of climate change on rock slope stability: Monitoring and modelling. In: McInnes R, Jakeways J, Fairbank H, Mathie E (eds) International Conference on Landslides and Climate Change, Ventnor, England, May 2007. Proceedings and Monographs in Engineering, Water and Earth Sciences. pp 237-245. doi:https://doi.org/10.1201/NOE0415443180.ch29

  • Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian Dolomites since the Late glacial. CATENA 55(2):141–161. https://doi.org/10.1016/s0341-8162(03)00113-9

    Article  Google Scholar 

  • Stock GM, Martel SJ, Collins BD, Harp EL (2012) Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA. Earth Surf Proc Land 37(5):546–561. https://doi.org/10.1002/esp.3192

    Article  Google Scholar 

  • Suhett-Helmer G, Sulem J, Ghabezloo S, Rohmer J, Hild F Experimental Evaluation of the Fracture Toughness on a Limestone. In: ISRM Regional Symposium - EUROCK 2014, 2014. ISRM-EUROCK-2014–031,

  • Taboada A, Ginouvez H, Renouf M, Azemard P (2017) Landsliding generated by thermomechanical interactions between rock columns and wedging blocks: study case from the Larzac Plateau (Southern France). EPJ Web Conf 140:14012. https://doi.org/10.1051/epjconf/201714014012

    Article  Google Scholar 

  • Vargas EdAJ, Castro JT, Amaral C, Figueiredo RP On mechanisms for failure of some rock slopes in Rio de Janeiro, Brazil: Thermal fatigue? In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, une 28 -July 2, 2004 2004. Taylor & Francis Group, pp 1007–1011

  • Vargas EdAJ, Chavez E, Gusmão L, Amaral C Is thermal fatigue a possible mechanism for failures of some rock slopes in Rio de Janeiro, Brazil? In: 43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, NC, 2009.

  • Vargas EdAJ, Velloso RQ, Chávez LE, Gusmão L, Palmeiro do Amaral C, (2013) On the effect of thermally induced stresses in failures of some rock slopes in Rio de Janeiro, Brazil. Rock Mech Rock Eng 46(1):123–134. https://doi.org/10.1007/s00603-012-0247-9

    Article  Google Scholar 

  • Vásárhelyi B (1997) Influence of pressure on the crack propagation under mode I loading in anisotropic gneiss. Technical note. Rock Mech Rock Eng 30(1):59–64

    Article  Google Scholar 

  • Villarraga C, Vaunat J, Virely D, Gasc M (2021) Effect of thermal cycles on rock cliff deformation. Monitoring and interpretation. IOP Conf Ser Earth Environ Sci 833(1):012152. https://doi.org/10.1088/1755-1315/833/1/012152

    Article  Google Scholar 

  • Virely D, Gasc-Barbier M, Merrien-Soukatchoff V (2021) More than eleven years of temperature and displacements recorded on and in a limestone cliff: dataset. Data Brief 39:107568. https://doi.org/10.1016/j.dib.2021.107568

    Article  Google Scholar 

  • Vlcko J, Jezny M, Pagacova Z (2005a) Influence of Thermal Expansion on Slope Displacements in Landslides. Paper presented at the Landslides, Risk Analysis and Sustainable Disaster Management. Proceedings of the First General Assembly if the International Consortium on Landslides,

  • Vlcko J, Jezny M, Pagacova Z Thermal expansion effect on slope deformation recordings at Spis Castle. In: Proceeding. of 15th Conference on Engineering Geology (Tagung Ingenieurgeologie), Erlangen, Germany, 6–9 April 2005b 2005b.

  • Vlcko J, Greif V, Grof V, Jezny M, Petro L, Brcek M (2009) Rock displacement and thermal expansion study at historic heritage sites in Slovakia. Environ Geol 58(8):1727–1740

    Article  Google Scholar 

  • Walton RJ, Worotnicki GA A comparison of three borehole instruments for monitoring the change of rock stress with time. In: Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, 1–3 September 1986 1986.

  • Watson AD, Moore DP, Stewart TW Temperature influence on rock slope movements at Checkerboard Creek. In: W. L, M E, S.A.B F, A.S.F S (eds) Landslides: evaluation and stabilization, Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, June 28 -July 2, 2004 2004. Taylor & Francis Group, pp 557–563

  • Whalley WB, McGreevy JP (1983) Weathering. Progress Phys Geogr Earth Environ 7(4):559–586. https://doi.org/10.1177/030913338300700404

    Article  Google Scholar 

  • Yatsu E (1988) The nature of weathering: an introduction. Overseas distributor Maruzen Co., Sozosha

    Google Scholar 

  • Zhao Y, Norouzi H, Azarderakhsh M, AghaKouchak A (2021) Global patterns of hottest, coldest and extreme diurnal variability on earth. Bull Am Meteorol Soc. https://doi.org/10.1175/bams-d-20-0325.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Merrien-Soukatchoff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 6, 7 and 8.

Table 6 Notations used in the paper
Table 7 Thermoelastic parameters: definitions and values for the gneissic rock of Les Rochers de Valabres (modified from Gunzburger et al. 2005)
Table 8 Thermoelastic parameters: the limestone of La Roque-Gageac

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merrien-Soukatchoff, V., Gasc-Barbier, M. The Effect of Natural Thermal Cycles on Rock Outcrops: Knowledge and Prospect. Rock Mech Rock Eng 56, 6797–6822 (2023). https://doi.org/10.1007/s00603-023-03420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-023-03420-1

Keywords

Navigation