Skip to main content

Advertisement

Log in

Inducing Tensile Failure of Claystone Through Thermal Pressurization in a Novel Triaxial Device

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Complex coupled thermo-hydromechanical (THM) loading paths are expected to occur in clay rocks which serve as host formations for geological radioactive waste repositories. Exothermic waste packages heat the rock, causing thermal strains and temperature induced pore pressure build-up. The drifts are designed in such a way as to limit these effects. One has to anticipate failure and fracturing of the material, should pore pressures exceed the tensile resistance of the rock. To characterise the behaviour of the Callovo-Oxfordian claystone (COx) under effective tension and to quantify the tensile failure criterion, a laboratory program is carried out in this work. THM loading paths which correspond to the expected in situ conditions are recreated in the laboratory. To this end, a special triaxial system was developed, which allows the independent control of radial and axial stresses, as well as of pore pressure and temperature of rock specimens. More importantly, the device allows one to maintain axial effective tension on a specimen. Saturated cylindrical claystone specimens were tested in undrained conditions under constrained lateral deformation and under nearly constant axial stress. The specimens were heated until the induced pore pressures created effective tensile stresses and ultimately fractured the material. The failure happened at average axial effective tensile stresses around 3.0 MPa. Fracturing under different lateral total stresses allows one to describe the failure with a Hoek–Brown or Fairhurst’s generalized Griffith criterion. Measured axial extension strains are analysed based on a transversely isotropic thermo-poroelastic constitutive model, which is able to satisfactorily reproduce the observed behaviour.

Highlights

  • Thermal pressurization of clay rock in deep radioactive waste repositories can reduce the effective stresses, which can lead to damage or failure.

  • Our novel laboratory triaxial device is able mimic in situ conditions: Constant vertical total stress, zero lateral deformation and thermal pressurization.

  • Pore pressure increase, vertical extension strains and thermal pressurization failure were recorded in a series of tests on Callovo-Oxfordian claystone specimens.

  • The effective tensile strength was reached at values around 3 MPa in tension and temperatures between 53 and 64 °C, creating sub-horizontal fractures.

  • The experimental responses can be well reproduced using a thermo-poroelasticity model.

  • Hoek–Brown and Fairhurst generalized Griffith criteria appear suitable to account for the rock's tensile resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

h :

Direction parallel to bedding

z :

Direction perpendicular to bedding

\(\sigma _{i}\) :

Total stress in direction i

\(\sigma '_{i}\) :

Terzaghi effective stress in direction i

\(\varepsilon _i\) :

Strain in direction i

\(\sigma _c\) :

Unconfined compressive strength

\(\sigma _t\) :

Tensile strength

\(E_i\) :

Young’s modulus in direction i

\(\nu _i\) :

Poisson’s ratio in direction i

\(m_i\) :

Hoek–Brown criterion parameter

\(\phi\) :

Porosity

\(\rho\) :

Wet density

\(\rho _d\) :

Dry density

w :

Water content

\(S_r\) :

Degree of saturation

s :

Suction

\(p_f\) :

Pore pressure

T :

Temperature

\(\sigma\) :

Isotropic confining pressure

\(\varepsilon _\mathrm{hyd}\) :

Volumetric hydration swelling

\(\gamma _t\) :

Fracture angle with respect to bedding

\(C_{ij}\) :

Elastic compliance matrix

\(b_i\) :

Biot’s coefficient in direction i

\(\alpha _{d,i}\) :

Drained thermal expansion coefficient in direction i

\(G'\) :

Shear modulus within the isotropic plane

G :

Shear modulus perpendicular to the isotropic plane

\(\alpha _{\phi }\) :

Bulk thermal expansion coefficient of the pore volume

M :

Biot’s modulus

\(K_f\) :

Bulk modulus of the pore fluid

\(K_{\phi }\) :

Bulk modulus of the pore volume

\(\varphi\) :

Friction angle

c :

Cohesion

\(V_L\) :

Volume of the drainage system

\(c_L\) :

Compressibility of the drainage system with respect to fluid pressure

\(p_L\) :

Fluid pressure within the drainage system

\(\kappa _L\) :

Compressibility of the drainage system with respect to radial confining pressure

\(\sigma _\mathrm{rad}\) :

Radial confining pressure

\(\alpha _L\) :

Bulk thermal expansion coefficient of the drainage system

\(M_s\) :

Fluid mass within the specimen

\(m_f\) :

Fluid mass per unit volume of the specimen

\(V_s\) :

Total specimen volume

\(M_L\) :

Fluid mass within the drainage system

\(\rho _L\) :

Fluid density within the drainage system

\(\rho _f\) :

Pore fluid density

\(c_f\) :

Pore fluid compressibility

\(\alpha _f\) :

Pore fluid bulk thermal expansion coefficient

References

  • Abuel-Naga HM, Bergado DT, Bouazza A (2007) Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng Geol 89(1–2):144–154

    Google Scholar 

  • Aichi M, Tokunaga T (2012) Material coefficients of multiphase thermoporoelasticity for anisotropic micro-heterogeneous porous media. Int J Solids Struct 49(23–24):3388–3396

    Google Scholar 

  • Akazawa T (1943) New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part 1). J Jpn Civ Eng Inst 29:777–787

    Google Scholar 

  • Andra (2005) Dossier 2005 Argile: Evaluation of the feasibility of a geological repository in an argillaceous formation. https://international.andra.fr/sites/international/files/2019-03/3-%20Dossier%202005%20Argile%20Synthesis%20-%20Evaluation%20of%20the%20feasibility%20of%20a%20geological%20repository%20in%20an%20argillaceous%20formation_0.pdf. Accessed 18 Mar 2022

  • Armand G, Dewonck S, Bosgiraud JM, Richard-Panot L (2015) Development and new research program in the Meuse Haute-Marne Underground Research Laboratory (France). In: Proceedings of the 13th ISRM International Congress of Rock Mechanics, vol 1, Montreal, Canada, pp. 1–15

  • Armand G, Bumbieler F, Conil N, de la Vaissière R, Bosgiraud JM, Vu MN (2017) Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone. J Rock Mech Geotech Eng 9(3):415–427. https://doi.org/10.1016/j.jrmge.2017.03.004

    Article  Google Scholar 

  • Auvray C, Giot R, Giraud A (2015) Caractérisation géomécanique sur échantillons - Essais de traction indirecte, Andra report. Tech. rep

  • Baldi G, Hueckel T, Pellegrini R (1988a) Thermal volume changes of the mineral-water system in low-porosity clay soils. Can Geotech J 25(4):807–825

    Google Scholar 

  • Baldi G, Hight DW, Thomas GE (1988b) A reevaluation of conventional triaxial test methods. In: Advanced triaxial testing of soil and rock, ASTM STP (977), pp 219–263

  • Bažant ZP (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech 110(4):518–535. https://doi.org/10.1061/(asce)0733-9399(1984)110:4(518)

    Article  Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Conil N (2017a) Thermal volume changes and creep in the Callovo-Oxfordian claystone. Rock Mech Rock Eng 50(9):2297–2309

    Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Tang AM, Menaceur H, Conil N (2017b) Poroelasticity of the Callovo-Oxfordian Claystone. Rock Mech Rock Eng 50(4):871–889

    Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Conil N (2018) Drained triaxial tests in low-permeability shales: application to the Callovo-Oxfordian Claystone. Rock Mech Rock Eng 51(7):1979–1993

    Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    Google Scholar 

  • Bossart P (2011) Characteristics of the Opalinus Clay at Mont Terri Project. Wabern Switz 3:26

    Google Scholar 

  • Brace WF (1964) Brittle fracture of rocks. In: State of stress in the Earths Crust, Rudd WR Publisher: Elsevier, New York, pp 111–174

    Google Scholar 

  • Braun P, Ghabezloo S, Delage P, Sulem J, Conil N (2019) Determination of multiple thermo-hydro-mechanical rock properties in a single transient experiment: application to shales. Rock Mech Rock Eng 52:2023–2038

    Google Scholar 

  • Braun P, Delage P, Ghabezloo S, Sulem J, Conil N (2020) Effect of anisotropy on the thermal volume changes of the Callovo-Oxfordian claystone. Géotech Lett 10(1):63–66. https://doi.org/10.1680/jgele.19.00045

    Article  Google Scholar 

  • Braun P, Ghabezloo S, Delage P, Sulem J, Conil N (2021a) Thermo-poro-elastic behaviour of a transversely isotropic shale: thermal expansion and pressurization. Rock Mech Rock Eng 54(1):359–375. https://doi.org/10.1007/s00603-020-02269-y

    Article  Google Scholar 

  • Braun P, Ghabezloo S, Delage P, Sulem J, Conil N (2021b) Transversely isotropic poroelastic behaviour of the Callovo-Oxfordian claystone: a set of stress-dependent parameters. Rock Mech Rock Eng 54(1):377–396. https://doi.org/10.1007/s00603-020-02268-z

    Article  Google Scholar 

  • Bumbieler F, Plúa C, Tourchi S, Vu MN, Vaunat J, Gens A, Armand G (2021) Feasibility of constructing a full-scale radioactive high-level waste disposal cell and characterization of its thermo-hydro-mechanical behavior. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104555

    Article  Google Scholar 

  • Carneiro F (1943) A new method to determine the tensile strength of concrete. In: Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, vol 3, pp 126–129

  • Cheng AHD (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Min Sci 34(2):199–205

    Google Scholar 

  • Chiarelli AS, Shao JF, Hoteit N (2003) Modeling of elastoplastic damage behavior of a claystone. Int J Plast 19:23–45

    Google Scholar 

  • Chiu HK, Johnston IW, Donald IB (1983) Appropriate techniques for triaxial testing of saturated soft rock. Int J Rock Mech Min Sci 20(3):107–120. https://doi.org/10.1016/0148-9062(83)91301-3

    Article  Google Scholar 

  • Conil N, Talandier J, Djizanne H, de La Vaissière R, Righini-Waz C, Auvray C, Morlot C, Armand G (2018) How rock samples can be representative of in situ condition: a case study of Callovo-Oxfordian claystones. J Rock Mech Geotech Eng 10(4):613–623

    Google Scholar 

  • Conil N, Vitel M, Plua C, Vu MN, Seyedi D, Armand G (2020) In situ investigation of the thm behavior of the callovo-oxfordian claystone. Rock Mech Rock Eng 53:2747–2769. https://doi.org/10.1007/s00603-020-02073-8

    Article  Google Scholar 

  • Coussy O (2004) Poromechanics. Wiley, New York

    Google Scholar 

  • Coviello A, Lagioia R, Nova R (2005) On the measurement of the tensile strength of soft rocks. Rock Mech Rock Eng 38(4):251–273

    Google Scholar 

  • Davy CA, Skoczylas F, Barnichon JD, Lebon P (2007) Permeability of macro-cracked argillite under confinement: Gas and water testing. Phys Chem Earth 32(8–14):667–680

    Google Scholar 

  • Diederichs MS (2007) The 2003 Canadian Geotechnical Colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J 44(9):1082–1116

    Google Scholar 

  • Eberhardt E (2012) The Hoek-Brown failure criterion. Rock Mech Rock Eng 45(6):981–988. https://doi.org/10.1007/s00603-012-0276-4

    Article  Google Scholar 

  • Escoffier S (2002) Caractérisation expérimentale du comportement hydroméchanique des argilites de Meuse/Haute-Marne. PhD thesis, Institut National Polytechnique de Lorraine

  • Escoffier S, Homand F, Giraud A, Hoteit N, Su K (2005) Under stress permeability determination of the Meuse/Haute-Marne mudstone. Eng Geol 81(3):329–340

    Google Scholar 

  • Ewy RT (2015) Shale/claystone response to air and liquid exposure, and implications for handling, sampling and testing. Int J Rock Mech Min Sci 80:388–401

    Google Scholar 

  • Fairhurst C (1961) Laboratory measurement of some physical properties of rock. In: The 4th US Symposium on Rock Mechanics (USRMS). American Rock Mech Assoc 1:105–118

    Google Scholar 

  • Fairhurst C (1964) On the validity of the ‘Brazilian’ test for brittle materials. Int J Rock Mech Min Sci Geomech Abstr 1:535–546

    Google Scholar 

  • Favero V, Ferrari A, Laloui L (2016) Thermo-mechanical volume change behaviour of Opalinus Clay. Int J Rock Mech Min Sci 90(November 2015):15–25. https://doi.org/10.1016/j.ijrmms.2016.09.013

    Article  Google Scholar 

  • Gens A, Vaunat J, Garitte B, Wileveau Y (2007) In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Géotechnique 57(2):207–228

    Google Scholar 

  • Ghabezloo S, Sulem J (2009) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42(1):1–24

    Google Scholar 

  • Ghabezloo S, Sulem J (2010) Effect of the volume of the drainage system on the measurement of undrained thermo-poro-elastic parameters. Int J Rock Mech Min Sci 47(1):60–68

    Google Scholar 

  • Griffith A (1924) The theory of rupture. In: Proceedings of the 1st International Congress of applied mechanics, Tech. Boekhandel en Drukkerij J Walter Jr, Delft, pp 55–63

  • Guayacán-Carrillo LM, Ghabezloo S, Sulem J, Seyedi DM, Armand G (2017) Effect of anisotropy and hydro-mechanical couplings on pore pressure evolution during tunnel excavation in low-permeability ground. Int J Rock Mech Min Sci 97:1–14

    Google Scholar 

  • Hansen FD, Vogt TJ (1987) Thermo mechanical properties of selected shales. Tech. rep., Oak Ridge National Laboratory Report ORNL/Sub/85-97343/2 (RSI-0305)

  • Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4:177–285

    Google Scholar 

  • Hoek E (1964) Fracture of Anisotropic Rock. J S Afr Inst Min Metall 64(10):501–518

    Google Scholar 

  • Hoek E (1983) Strength of jointed rock masses. Géotechnique 33(3):187–223

    Google Scholar 

  • Hoek E (2007) Practical rock engineering. https://www.rocscience.com/assets/resources/learning/hoek/Practical-Rock-Engineering-Full-Text.pdf. Accessed 18 Mar 2022

  • Hoek E, Brown E (1980) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106(GT9):1013–1035

    Google Scholar 

  • Hoek E, Martin C (2014) Fracture initiation and propagation in intact rock—a review. J Rock Mech Geotech Eng 6(4):287–300

    Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. A.A. Balkma, Rotterdam

    Google Scholar 

  • IAPWS-IF97 (2008) IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam. Springer, Berlin

    Google Scholar 

  • ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Google Scholar 

  • Jobmann M, Polster M (2007) The response of opalinus clay due to heating: a combined analysis of in situ measurements, laboratory investigations and numerical calculations. Phys Chem Earth Parts A/B/C 32(8–14):929–936

    Google Scholar 

  • Li B, Wong RC (2018) Creating tensile fractures in Colorado shale using an unconfined fast heating test. Geotech Test J 42(2):296–306

    Google Scholar 

  • Mánica MA, Gens A, Vaunat J, Armand G, Vu MN (2021) Numerical simulation of underground excavations in an indurated clay using non-local regularisation. Part 1: formulation and base case. Géotechnique 1–21. https://doi.org/10.1680/jgeot.20.P.246, https://www.icevirtuallibrary.com/doi/10.1680/jgeot.20.P.246

  • Menaceur H, Delage P, Am Tang, Conil N (2015) The thermo-mechanical behaviour of the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci 78:290–303

    Google Scholar 

  • Menaceur H, Delage P, Tang AM, Conil N (2016) On the thermo-hydro-mechanical behaviour of a sheared Callovo-Oxfordian claystone sample with respect to the EDZ behaviour. Rock Mech Rock Eng 49(5):1875–1888

    Google Scholar 

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang AM, Gatmiri B (2012) A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci 52:112–121

    Google Scholar 

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang AM, Gatmiri B (2014) The thermal volume changes of the Callovo-Oxfordian claystone. Rock Mech Rock Eng 47(1):131–142

    Google Scholar 

  • Mohamadi M, Wan RG (2016) Strength and post-peak response of Colorado shale at high pressure and temperature. Int J Rock Mech Min Sci 84:34–46

    Google Scholar 

  • Monfared M, Delage P, Sulem J, Mohajerani M, Tang AM, De Laure E (2011a) A new hollow cylinder triaxial cell to study the behavior of geo-materials with low permeability. Int J Rock Mech Min Sci 48(4):637–649

    Google Scholar 

  • Monfared M, Sulem J, Delage P, Mohajerani M (2011b) A laboratory investigation on thermal properties of the Opalinus claystone. Rock Mech Rock Eng 44(6):735–747

    Google Scholar 

  • Palciauskas VV, Domenico PA (1982) Characterization of drained and undrained response of thermally loaded repository rocks. Water Resour Res 18(2):281–290

    Google Scholar 

  • Pardoen B, Seyedi DM, Collin F (2015) Shear banding modelling in cross-anisotropic rocks. Int J Solids Struct 72:63–87. https://doi.org/10.1016/j.ijsolstr.2015.07.012

    Article  Google Scholar 

  • Perras MA, Diederichs MS (2014) A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32(2):525–546. https://doi.org/10.1007/s10706-014-9732-0

    Article  Google Scholar 

  • Pham QT, Vales F, Malinsky L, Minh DN, Gharbi H (2007) Effects of desaturation—resaturation on mudstone. Phys Chem Earth 32:646–655

    Google Scholar 

  • Plúa C, Vu MN, Armand G, Rutqvist J, Birkholzer J, Xu H, Guo R, Thatcher KE, Bond AE, Wang W, Nagel T, Shao H, Kolditz O (2021a) A reliable numerical analysis for large-scale modelling of a high-level radioactive waste repository in the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104574

    Article  Google Scholar 

  • Plúa C, Vu MN, Seyedi DM, Armand G (2021b) Effects of inherent spatial variability of rock properties on the thermo-hydro-mechanical responses of a high-level radioactive waste repository. Int J Rock Mech Min Sci 145(February):104682. https://doi.org/10.1016/j.ijrmms.2021.104682

    Article  Google Scholar 

  • Robinet JC, Sardini P, Coelho D, Parneix JC, Prt D, Sammartino S, Boller E, Altmann S (2012) Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone (Bure, France). Water Resour Res. https://doi.org/10.1029/2011WR011352

    Article  Google Scholar 

  • Seyedi D, Armand G, Conil N, Vitel M, Vu MN (2017) On the thermo-hydro-mechanical pressurization in Callovo-Oxfordian claystone under thermal loading. In: Poromechanics 2017—Proceedings of the 6th Biot Conference on Poromechanics 1:754–761

  • Sultan N, Delage P, Cui Y (2002) Temperature effects on the volume change behaviour of boom clay. Eng Geol 64(2–3):135–145

    Google Scholar 

  • Tourchi S, Vaunat J, Gens A, Bumbieler F, Vu MN, Armand G (2021) A full-scale in situ heating test in Callovo-Oxfordian claystone: observations, analysis and interpretation. Comput Geotech 13:3. https://doi.org/10.1016/j.compgeo.2021.104045

    Article  Google Scholar 

  • Valès F, Nguyen Minh D, Gharbi H, Rejeb A (2004) Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl Clay Sci 26:197–207. https://doi.org/10.1016/j.clay.2003.12.032

    Article  Google Scholar 

  • Vu MN, Armand G, Plua C (2020) Thermal pressurization coefficient of anisotropic elastic porous media. Rock Mech Rock Eng 53(4):2027–2031. https://doi.org/10.1007/s00603-019-02021-1

    Article  Google Scholar 

  • Wild KM, Walter P, Amann F (2017) The response of Opalinus Clay when exposed to cyclic relative humidity variations. Solid Earth 8(2):351–360. https://doi.org/10.5194/se-8-351-2017

    Article  Google Scholar 

  • Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32(8–14):866–878

    Google Scholar 

  • Yang MT, Hsieh HY (1997) Direct tensile behavior of a transversely isotropic rock. Int J Rock Mech Min Sci 34(5):837–849

    Google Scholar 

  • Zhang C, Rothfuchs T (2004) Experimental study of the hydro-mechanical behaviour of the Callovo-Oxfordian argillite. Appl Clay Sci 26(1–4):325–336. https://doi.org/10.1016/j.clay.2003.12.025

    Article  Google Scholar 

  • Zhang F, Xie SY, Hu DW, Shao JF, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Appl Clay Sci 69:79–86

    Google Scholar 

  • Zhang CL, Conil N, Armand G (2017) Thermal effects on clay rocks for deep disposal of high-level radioactive waste. J Rock Mech Geotech Eng 9(3):463–478

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Braun.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, P., Delage, P., Ghabezloo, S. et al. Inducing Tensile Failure of Claystone Through Thermal Pressurization in a Novel Triaxial Device. Rock Mech Rock Eng 55, 3881–3899 (2022). https://doi.org/10.1007/s00603-022-02838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-022-02838-3

Keywords

Navigation